![簡(jiǎn)明Levy過(guò)程課件_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-4/17/b3b1a814-2fab-45f2-893b-c7a7cc1b0ff0/b3b1a814-2fab-45f2-893b-c7a7cc1b0ff01.gif)
![簡(jiǎn)明Levy過(guò)程課件_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-4/17/b3b1a814-2fab-45f2-893b-c7a7cc1b0ff0/b3b1a814-2fab-45f2-893b-c7a7cc1b0ff02.gif)
![簡(jiǎn)明Levy過(guò)程課件_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-4/17/b3b1a814-2fab-45f2-893b-c7a7cc1b0ff0/b3b1a814-2fab-45f2-893b-c7a7cc1b0ff03.gif)
![簡(jiǎn)明Levy過(guò)程課件_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-4/17/b3b1a814-2fab-45f2-893b-c7a7cc1b0ff0/b3b1a814-2fab-45f2-893b-c7a7cc1b0ff04.gif)
![簡(jiǎn)明Levy過(guò)程課件_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-4/17/b3b1a814-2fab-45f2-893b-c7a7cc1b0ff0/b3b1a814-2fab-45f2-893b-c7a7cc1b0ff05.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1Levy Processes-From Probability to FinanceAnatoliy Swishchuk,Mathematical and Computational Finance Laboratory, Department of Mathematics and Statistics, U of C“Lunch at the Lab” TalkFebruary 3, 20052Outline Introduction: Probability and Stochastic Processes The Structure of Levy Processes Applicat
2、ions to Finance The talk is based on the paper by David Applebaum (University of Sheffield, UK), Notices of the AMS, Vol. 51, No 11.3Introduction: Probability Theory of Probability: aims to model and to measure the Chance The tools: Kolmogorovs theory of probability axioms (1930s) Probability can be
3、 rigorously founded on measure theory4Introduction: Stochastic Processes Theory of Stochastic Processes: aims to model the interaction of Chance and Time Stochastic Processes: a family of random variables (X(t), t=0) defined on a probability space (Omega, F, P) and taking values in a measurable spac
4、e (E,G) X(t) is a (E,G) measurable mapping from Omega to E: a random observation made on E at time t5Importance of Stochastic Processes Not only mathematically rich objects Applications: physics, engineering, ecology, economics, finance, etc. Examples: random walks, Markov processes, semimartingales
5、, measure-valued diffusions, Levy Processes, etc.6Importance of Levy Processes There are many important examples: Brownian motion, Poisson Process, stable processes, subordinators, etc. Generalization of random walks to continuous time The simplest classes of jump-diffusion processes A natural model
6、s of noise to build stochastic integrals and to drive SDE Their structure is mathematically robust Their structure contains many features that generalize naturally to much wider classes of processes, such as semimartingales, Feller-Markov processes, etc.7Main Original Contributors to the Theory of L
7、evy Processes: 1930s-1940s Paul Levy (France) Alexander Khintchine (Russia) Kiyosi Ito (Japan)8Paul Levy (1886-1971)9Main Original Papers Levy P. Sur les integrales dont les elements sont des variables aleatoires independentes, Ann. R. Scuola Norm. Super. Pisa, Sei. Fis. e Mat., Ser. 2 (1934), v. II
8、I, 337-366; Ser. 4 (1935), 217-218 Khintchine A. A new derivation of one formula by Levy P., Bull. Moscow State Univ., 1937, v. I, No 1, 1-5 Ito K. On stochastic processes, Japan J. Math. 18 (1942), 261-30110Definition of Levy Processes X(t) X(t) has independent and stationary increments Each X(0)=0
9、 w.p.1 X(t) is stochastically continuous, i. e, for all a0 and for all s=0, P (|X(t)-X(s)|a)-0 when t-s11The Structure of Levy Processes: The Levy-Khintchine Formula If X(t) is a Levy process, then its characteristic function equals to where12Examples of Levy Processes Brownian motion: characteristi
10、c (0,a,0) Brownian motion with drift (Gaussian processes): characteristic (b,a,0) Poisson process: characteristic (0,0,lambdaxdelta1), lambda-intensity, delta1-Dirac mass concentrated at 1 The compound Poisson process Interlacing processes=Gaussian process +compound Poisson process Stable processes
11、Subordinators Relativistic processes13Simulation of Standard Brownian Motion14Simulation of the Poisson Process15Stable Levy Processes Stable probability distributions arise as the possible weak limit of normalized sums of i.i.d. r.v. in the central limit theorem Example: Cauchy Process with density
12、 (index of stability is 1)16Simulation of the Cauchy Process17Subordinators A subordinator T(t) is a one-dimensional Levy process that is non-decreasing Important application: time change of Levy process X(t) : Y(t):=X(T(t) is also a new Levy process18Simulation of the Gamma Subordinator19The Levy-I
13、to Decomposition: Structure of the Sample Paths of Levy Processes20Application to Finance. I. Replace Brownian motion in BSM model with a more general Levy process (P. Carr, H. Geman, D. Madan and M. Yor) Idea: 1) small jumps term describes the day-to-day jitter that causes minor fluctuations in sto
14、ck prices; 2) big jumps term describes large stock price movements caused by major market upsets arising from, e.g., earthquakes, etc.21Main Problems with Levy Processes in Finance. Market is incomplete, i.e., there may be more than one possible pricing formula One of the methods to overcome it: ent
15、ropy minimization Example: hyperbolic Levy process (E. Eberlain) (with no Brownian motion part); a pricing formula have been developed that has minimum entropy22Hyperbolic Levy Process: Characteristic Function23Bessel Function of the Third Kind(!) The Bessel function of the third kind or Hankel func
16、tion Hn(x) is a (complex) combination of the two solutions of Bessel DE: the real part is the Bessel function of the first kind, the complex part the Bessel function of the second kind (very complicated!) 24Bessel Differential Equation25Application of Levy Processes in Finance. II. BSM formula conta
17、ins the constant of volatility One of the methods to improve it: stochastic volatility models (SDE for volatility) Example: stochastic volatility is an Ornstein-Uhlenbeck process driven by a subordinator T(t) (O. Barndorff-Nielsen and N. Shephard)26Stochastic Volatility Model Using Levy Process27References on Levy Processes (Books) D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge University Press, 2004 O.E. Barndorff-Nielsen, T. Mikosch and S. Resnick (Eds.), Levy Processes: Theory and Applications, Birk
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45101-2024動(dòng)物炭疽診斷技術(shù)
- PB-22-6-Hydroxyisoquinoline-isomer-生命科學(xué)試劑-MCE-4732
- KOTX1-生命科學(xué)試劑-MCE-8752
- Dipalmitelaidin-生命科學(xué)試劑-MCE-4147
- Asante-potassium-green-1-TMA-APG-1-TMA-生命科學(xué)試劑-MCE-1099
- 8-S-Hydroxy-9-S-hexahydrocannabinol-生命科學(xué)試劑-MCE-2932
- 1cP-MiPLA-生命科學(xué)試劑-MCE-6571
- 二零二五年度股權(quán)與合伙人協(xié)議書整合執(zhí)行細(xì)則
- 二零二五年度2025年度新材料研發(fā)與應(yīng)用連帶保證借款合同
- 2025年度耕地復(fù)墾與農(nóng)業(yè)生態(tài)環(huán)境保護(hù)合同
- 電力服務(wù)收費(fèi)標(biāo)準(zhǔn)附表
- 小學(xué)主題班會(huì)教學(xué)設(shè)計(jì)-《給你點(diǎn)個(gè)“贊”》通用版
- 【教學(xué)創(chuàng)新大賽】《系統(tǒng)解剖學(xué)》教學(xué)創(chuàng)新成果報(bào)告
- 賽意EAM設(shè)備管理IOT解決方案
- 氫氰酸安全技術(shù)說(shuō)明書MSDS
- 動(dòng)物檢疫技術(shù)-動(dòng)物檢疫的范圍(動(dòng)物防疫與檢疫技術(shù))
- 比較思想政治教育學(xué)
- 醫(yī)用內(nèi)窺鏡冷光源產(chǎn)品技術(shù)要求深圳邁瑞
- 砌墻磚和砌塊檢測(cè)作業(yè)指導(dǎo)書
- 護(hù)理教學(xué)查房評(píng)分標(biāo)準(zhǔn)
- GB/T 23505-2017石油天然氣工業(yè)鉆機(jī)和修井機(jī)
評(píng)論
0/150
提交評(píng)論