




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第六章第六章 分支限界法分支限界法1第六章第六章 分支限界法分支限界法本章主要知識(shí)點(diǎn)本章主要知識(shí)點(diǎn) 6.1 分支限界法的基本思想 6.2 單源最短路徑問題 6.3 裝載問題 6.4 布線問題 6.5 01背包問題 6.6 最大團(tuán)問題 6.7 旅行售貨員問題 6.8 電路板排列問題 6.9 批處理作業(yè)調(diào)度26.1 分支限界法的基本思想分支限界法的基本思想1. 分支限界法與回溯法的不同(1)求解目標(biāo):回溯法的求解目標(biāo)是找出解空間樹中滿足約束條件的所有解,而分支限界法的求解目標(biāo)則是找出滿足約束條件的一個(gè)解,或是在滿足約束條件的解中找出在某種意義下的最優(yōu)解。 (2)搜索方式的不同:回溯法以深度優(yōu)先的方
2、式搜索解空間樹,而分支限界法則以廣度優(yōu)先或以最小耗費(fèi)優(yōu)先的方式搜索解空間樹。 36.1 分支限界法的基本思想分支限界法的基本思想2. 分支限界法基本思想 分支限界法常以廣度優(yōu)先或以最小耗費(fèi)(最大效益)優(yōu)先的方式搜索問題的解空間樹。 在分支限界法中,每一個(gè)活結(jié)點(diǎn)只有一次機(jī)會(huì)成為擴(kuò)展結(jié)點(diǎn)。活結(jié)點(diǎn)一旦成為擴(kuò)展結(jié)點(diǎn),就一次性產(chǎn)生其所有兒子結(jié)點(diǎn)。在這些兒子結(jié)點(diǎn)中,導(dǎo)致不可行解或?qū)е路亲顑?yōu)解的兒子結(jié)點(diǎn)被舍棄,其余兒子結(jié)點(diǎn)被加入活結(jié)點(diǎn)表中。 此后,從活結(jié)點(diǎn)表中取下一結(jié)點(diǎn)成為當(dāng)前擴(kuò)展結(jié)點(diǎn),并重復(fù)上述結(jié)點(diǎn)擴(kuò)展過程。這個(gè)過程一直持續(xù)到找到所需的解或活結(jié)點(diǎn)表為空時(shí)為止。 46.1 分支限界法的基本思想分支限界法的基
3、本思想3. 常見的兩種分支限界法(1)隊(duì)列式(FIFO)分支限界法 按照隊(duì)列先進(jìn)先出(FIFO)原則選取下一個(gè)節(jié)點(diǎn)為擴(kuò)展節(jié)點(diǎn)。 (2)優(yōu)先隊(duì)列式分支限界法 按照優(yōu)先隊(duì)列中規(guī)定的優(yōu)先級(jí)選取優(yōu)先級(jí)最高的節(jié)點(diǎn)成為當(dāng)前擴(kuò)展節(jié)點(diǎn)。56.2 單源最短路徑問題單源最短路徑問題1. 問題描述 下面以一個(gè)例子來說明單源最短路徑問題:在下圖所給的有向圖G中,每一邊都有一個(gè)非負(fù)邊權(quán)。要求圖G的從源頂點(diǎn)s到目標(biāo)頂點(diǎn)t之間的最短路徑。 66.2 單源最短路徑問題單源最短路徑問題 下圖是用優(yōu)先隊(duì)列式分支限界法解有向圖G的單源最短路徑問題產(chǎn)生的解空間樹。其中,每一個(gè)結(jié)點(diǎn)旁邊的數(shù)字表示該結(jié)點(diǎn)所對(duì)應(yīng)的當(dāng)前路長(zhǎng)。76.2 單源最
4、短路徑問題單源最短路徑問題2. 算法思想 解單源最短路徑問題的優(yōu)先隊(duì)列式分支限界法用一極小堆來存儲(chǔ)活結(jié)點(diǎn)表。其優(yōu)先級(jí)是結(jié)點(diǎn)所對(duì)應(yīng)的當(dāng)前路長(zhǎng)。 算法從圖G的源頂點(diǎn)s和空優(yōu)先隊(duì)列開始。結(jié)點(diǎn)s被擴(kuò)展后,它的兒子結(jié)點(diǎn)被依次插入堆中。此后,算法從堆中取出具有最小當(dāng)前路長(zhǎng)的結(jié)點(diǎn)作為當(dāng)前擴(kuò)展結(jié)點(diǎn),并依次檢查與當(dāng)前擴(kuò)展結(jié)點(diǎn)相鄰的所有頂點(diǎn)。如果從當(dāng)前擴(kuò)展結(jié)點(diǎn)i到頂點(diǎn)j有邊可達(dá),且從源出發(fā),途經(jīng)頂點(diǎn)i再到頂點(diǎn)j的所相應(yīng)的路徑的長(zhǎng)度小于當(dāng)前最優(yōu)路徑長(zhǎng)度,則將該頂點(diǎn)作為活結(jié)點(diǎn)插入到活結(jié)點(diǎn)優(yōu)先隊(duì)列中。這個(gè)結(jié)點(diǎn)的擴(kuò)展過程一直繼續(xù)到活結(jié)點(diǎn)優(yōu)先隊(duì)列為空時(shí)為止。86.2 單源最短路徑問題單源最短路徑問題3. 剪枝策略 在算法擴(kuò)
5、展結(jié)點(diǎn)的過程中,一旦發(fā)現(xiàn)一個(gè)結(jié)點(diǎn)的下界不小于當(dāng)前找到的最短路長(zhǎng),則算法剪去以該結(jié)點(diǎn)為根的子樹。 在算法中,利用結(jié)點(diǎn)間的控制關(guān)系進(jìn)行剪枝。從源頂點(diǎn)s出發(fā),2條不同路徑到達(dá)圖G的同一頂點(diǎn)。由于兩條路徑的路長(zhǎng)不同,因此可以將路長(zhǎng)長(zhǎng)的路徑所對(duì)應(yīng)的樹中的結(jié)點(diǎn)為根的子樹剪去。 96.2 單源最短路徑問題單源最短路徑問題 while (true) / 搜索問題的解空間 for (int j=1;j=n;j+) if(aenode.ij Float.MAX_VALUE & enode.length+aenode.ij distj) / 頂點(diǎn)i到頂點(diǎn)j可達(dá),且滿足控制約束 distj=enode.len
6、gth+aenode.ij; pj=enode.i; HeapNode node = new HeapNode(j,distj); heap.put(node); / 加入活結(jié)點(diǎn)優(yōu)先隊(duì)列 if (heap.isEmpty() break; else enode = (HeapNode) heap.removeMin(); 頂點(diǎn)頂點(diǎn)I I和和j j間有邊,且此間有邊,且此路徑長(zhǎng)小于原先從原點(diǎn)路徑長(zhǎng)小于原先從原點(diǎn)到到j(luò) j的路徑長(zhǎng)的路徑長(zhǎng) 106.3 裝載問題裝載問題1. 問題描述有一批共個(gè)集裝箱要裝上2艘載重量分別為C1和C2的輪船,其中集裝箱i的重量為Wi,且211ccwnii裝載問題要求確定
7、是否有一個(gè)合理的裝載方案可將這個(gè)集裝箱裝上這2艘輪船。如果有,找出一種裝載方案。 容易證明:如果一個(gè)給定裝載問題有解,則采用下面的策略可得到最優(yōu)裝載方案。 (1)首先將第一艘輪船盡可能裝滿;(2)將剩余的集裝箱裝上第二艘輪船。 116.3 裝載問題裝載問題2. 隊(duì)列式分支限界法 在算法的while循環(huán)中,首先檢測(cè)當(dāng)前擴(kuò)展結(jié)點(diǎn)的左兒子結(jié)點(diǎn)是否為可行結(jié)點(diǎn)。如果是則將其加入到活結(jié)點(diǎn)隊(duì)列中。然后將其右兒子結(jié)點(diǎn)加入到活結(jié)點(diǎn)隊(duì)列中(右兒子結(jié)點(diǎn)一定是可行結(jié)點(diǎn))。2個(gè)兒子結(jié)點(diǎn)都產(chǎn)生后,當(dāng)前擴(kuò)展結(jié)點(diǎn)被舍棄。 活結(jié)點(diǎn)隊(duì)列中的隊(duì)首元素被取出作為當(dāng)前擴(kuò)展結(jié)點(diǎn),由于隊(duì)列中每一層結(jié)點(diǎn)之后都有一個(gè)尾部標(biāo)記-1,故在取隊(duì)首元
8、素時(shí),活結(jié)點(diǎn)隊(duì)列一定不空。當(dāng)取出的元素是-1時(shí),再判斷當(dāng)前隊(duì)列是否為空。如果隊(duì)列非空,則將尾部標(biāo)記-1加入活結(jié)點(diǎn)隊(duì)列,算法開始處理下一層的活結(jié)點(diǎn)。126.3 裝載問題裝載問題2. 隊(duì)列式分支限界法while (true) if (ew + wi = c) enQueue(ew + wi, i); / 檢查左兒子結(jié)點(diǎn) enQueue(ew, i); /右兒子結(jié)點(diǎn)總是可行的 ew = (Integer) queue.remove().intValue(); / 取下一擴(kuò)展結(jié)點(diǎn) if (ew = -1) if (queue.isEmpty() return bestw; queue.put(new
9、Integer(-1); / 同層結(jié)點(diǎn)尾部標(biāo)志 ew = (Integer) queue.remove().intValue(); / 取下一擴(kuò)展結(jié)點(diǎn) i+; / 進(jìn)入下一層 136.3 裝載問題裝載問題3. 算法的改進(jìn) 節(jié)點(diǎn)的左子樹表示將此集裝箱裝上船,右子樹表示不將此集裝箱裝上船。設(shè)bestw是當(dāng)前最優(yōu)解;ew是當(dāng)前擴(kuò)展結(jié)點(diǎn)所相應(yīng)的重量;r是剩余集裝箱的重量。則當(dāng)ew+rbestw時(shí),可將其右子樹剪去,因?yàn)榇藭r(shí)若要船裝最多集裝箱,就應(yīng)該把此箱裝上船。 另外,為了確保右子樹成功剪枝,應(yīng)該在算法每一次進(jìn)入左子樹的時(shí)候更新bestw的值。146.3 裝載問題裝載問題3. 算法的改進(jìn)/ 檢查左兒子
10、結(jié)點(diǎn) int wt = ew + wi; if (wt bestw) bestw = wt; / 加入活結(jié)點(diǎn)隊(duì)列 if (i bestw & i 0; j-) bestxj = (e.leftChild) ? 1 : 0; e = e.parent; 176.3 裝載問題裝載問題5. 優(yōu)先隊(duì)列式分支限界法 解裝載問題的優(yōu)先隊(duì)列式分支限界法用最大優(yōu)先隊(duì)列存儲(chǔ)活結(jié)點(diǎn)表?;罱Y(jié)點(diǎn)x在優(yōu)先隊(duì)列中的優(yōu)先級(jí)定義為從根結(jié)點(diǎn)到結(jié)點(diǎn)x的路徑所相應(yīng)的載重量再加上剩余集裝箱的重量之和。 優(yōu)先隊(duì)列中優(yōu)先級(jí)最大的活結(jié)點(diǎn)成為下一個(gè)擴(kuò)展結(jié)點(diǎn)。以結(jié)點(diǎn)x為根的子樹中所有結(jié)點(diǎn)相應(yīng)的路徑的載重量不超過它的優(yōu)先級(jí)。子集樹中葉結(jié)
11、點(diǎn)所相應(yīng)的載重量與其優(yōu)先級(jí)相同。 在優(yōu)先隊(duì)列式分支限界法中,一旦有一個(gè)葉結(jié)點(diǎn)成為當(dāng)前擴(kuò)展結(jié)點(diǎn),則可以斷言該葉結(jié)點(diǎn)所相應(yīng)的解即為最優(yōu)解。此時(shí)可終止算法。 186.4 布線問題布線問題算法的思想 解此問題的隊(duì)列式分支限界法從起始位置a開始將它作為第一個(gè)擴(kuò)展結(jié)點(diǎn)。與該擴(kuò)展結(jié)點(diǎn)相鄰并且可達(dá)的方格成為可行結(jié)點(diǎn)被加入到活結(jié)點(diǎn)隊(duì)列中,并且將這些方格標(biāo)記為1,即從起始方格a到這些方格的距離為1。 接著,算法從活結(jié)點(diǎn)隊(duì)列中取出隊(duì)首結(jié)點(diǎn)作為下一個(gè)擴(kuò)展結(jié)點(diǎn),并將與當(dāng)前擴(kuò)展結(jié)點(diǎn)相鄰且未標(biāo)記過的方格標(biāo)記為2,并存入活結(jié)點(diǎn)隊(duì)列。這個(gè)過程一直繼續(xù)到算法搜索到目標(biāo)方格b或活結(jié)點(diǎn)隊(duì)列為空時(shí)為止。即加入剪枝的廣度優(yōu)先搜索。196
12、.4 布線問題布線問題Position offset = new Position 4;offset0 = new Position(0, 1); / 右offset1 = new Position(1, 0); / 下offset2 = new Position(0, -1); / 左offset3 = new Position(-1, 0); / 上 定義移動(dòng)方向的定義移動(dòng)方向的相對(duì)位移相對(duì)位移 for (int i = 0; i = size + 1; i+) grid0i = gridsize + 1i = 1; / 頂部和底部 gridi0 = gridisize + 1 = 1;
13、/ 左翼和右翼 設(shè)置邊界的圍墻設(shè)置邊界的圍墻206.4 布線問題布線問題for (int i = 0; i numOfNbrs; i+) nbr.row = here.row + offseti.row; nbr.col = here.col + offseti.col; if (gridnbr.rownbr.col = 0) / 該方格未標(biāo)記 gridnbr.rownbr.col = gridhere.rowhere.col + 1; if (nbr.row = finish.row) & (nbr.col = finish.col) break; q.put(new Positio
14、n(nbr.row, nbr.col); 找到目標(biāo)位置后,可以通過回溯方法找到這條最短路徑。216.5 0-1背包問題背包問題 算法的思想 首先,要對(duì)輸入數(shù)據(jù)進(jìn)行預(yù)處理,將各物品依其單位重量?jī)r(jià)值從大到小進(jìn)行排列。 在下面描述的優(yōu)先隊(duì)列分支限界法中,節(jié)點(diǎn)的優(yōu)先級(jí)由已裝袋的物品價(jià)值加上剩下的最大單位重量?jī)r(jià)值的物品裝滿剩余容量的價(jià)值和。 算法首先檢查當(dāng)前擴(kuò)展結(jié)點(diǎn)的左兒子結(jié)點(diǎn)的可行性。如果該左兒子結(jié)點(diǎn)是可行結(jié)點(diǎn),則將它加入到子集樹和活結(jié)點(diǎn)優(yōu)先隊(duì)列中。當(dāng)前擴(kuò)展結(jié)點(diǎn)的右兒子結(jié)點(diǎn)一定是可行結(jié)點(diǎn),僅當(dāng)右兒子結(jié)點(diǎn)滿足上界約束時(shí)才將它加入子集樹和活結(jié)點(diǎn)優(yōu)先隊(duì)列。當(dāng)擴(kuò)展到葉節(jié)點(diǎn)時(shí)為問題的最優(yōu)值。226.5 0-1背
15、包問題背包問題上界函數(shù)while (i = n & wi = cleft) / n表示物品總數(shù),cleft為剩余空間 cleft -= wi; /wi表示i所占空間 b += pi; /pi表示i的價(jià)值 i+; if (i = n) b += pi / wi * cleft; / 裝填剩余容量裝滿背包return b; /b為上界函數(shù)236.5 0-1背包問題背包問題 while (i != n + 1) / 非葉結(jié)點(diǎn) double wt = cw + wi; if (wt bestp) bestp = cp + pi; addLiveNode(up,cp + pi,cw + wi,i
16、 + 1, enode, true); up = bound(i + 1); if (up = bestp) /檢查右兒子節(jié)點(diǎn) addLiveNode(up,cp,cw,i + 1, enode, false); / 取下一個(gè)擴(kuò)展節(jié)點(diǎn)(略)分支限界搜索分支限界搜索過程過程246.6 最大團(tuán)問題最大團(tuán)問題問題描述 給定無向圖G=(V,E)。如果UV,且對(duì)任意u,vU有(u,v)E,則稱U是G的完全子圖。G的完全子圖U是G的團(tuán)當(dāng)且僅當(dāng)U不包含在G的更大的完全子圖中。G的最大團(tuán)是指G中所含頂點(diǎn)數(shù)最多的團(tuán)。 下圖G中,子集1,2是G的大小為2的完全子圖。這個(gè)完全子圖不是團(tuán),因?yàn)樗籊的更大的完全子圖1
17、,2,5包含。1,2,5是G的最大團(tuán)。1,4,5和2,3,5也是G的最大團(tuán)。 256.6 最大團(tuán)問題最大團(tuán)問題2. 上界函數(shù) 用變量cliqueSize表示與該結(jié)點(diǎn)相應(yīng)的團(tuán)的頂點(diǎn)數(shù);level表示結(jié)點(diǎn)在子集空間樹中所處的層次;用cliqueSize +n-level+1作為頂點(diǎn)數(shù)上界upperSize的值。 在此優(yōu)先隊(duì)列式分支限界法中,upperSize實(shí)際上也是優(yōu)先隊(duì)列中元素的優(yōu)先級(jí)。算法總是從活結(jié)點(diǎn)優(yōu)先隊(duì)列中抽取具有最大upperSize值的元素作為下一個(gè)擴(kuò)展元素。 266.6 最大團(tuán)問題最大團(tuán)問題3. 算法思想 子集樹的根結(jié)點(diǎn)是初始擴(kuò)展結(jié)點(diǎn),對(duì)于這個(gè)特殊的擴(kuò)展結(jié)點(diǎn),其cliqueSize
18、的值為0。 算法在擴(kuò)展內(nèi)部結(jié)點(diǎn)時(shí),首先考察其左兒子結(jié)點(diǎn)。在左兒子結(jié)點(diǎn)處,將頂點(diǎn)i加入到當(dāng)前團(tuán)中,并檢查該頂點(diǎn)與當(dāng)前團(tuán)中其他頂點(diǎn)之間是否有邊相連。當(dāng)頂點(diǎn)i與當(dāng)前團(tuán)中所有頂點(diǎn)之間都有邊相連,則相應(yīng)的左兒子結(jié)點(diǎn)是可行結(jié)點(diǎn),將它加入到子集樹中并插入活結(jié)點(diǎn)優(yōu)先隊(duì)列,否則就不是可行結(jié)點(diǎn)。 接 著 繼 續(xù) 考 察 當(dāng) 前 擴(kuò) 展 結(jié) 點(diǎn) 的 右 兒 子 結(jié) 點(diǎn) 。 當(dāng)upperSizebestn時(shí),右子樹中可能含有最優(yōu)解,此時(shí)將右兒子結(jié)點(diǎn)加入到子集樹中并插入到活結(jié)點(diǎn)優(yōu)先隊(duì)列中。276.6 最大團(tuán)問題最大團(tuán)問題 算法的while循環(huán)的終止條件是遇到子集樹中的一個(gè)葉結(jié)點(diǎn)(即n+1層結(jié)點(diǎn))成為當(dāng)前擴(kuò)展結(jié)點(diǎn)。 對(duì)于
19、子集樹中的葉結(jié)點(diǎn),有upperSizecliqueSize。此時(shí)活結(jié)點(diǎn)優(yōu)先隊(duì)列中剩余結(jié)點(diǎn)的upperSize值均不超過當(dāng)前擴(kuò)展結(jié)點(diǎn)的upperSize值,從而進(jìn)一步搜索不可能得到更大的團(tuán),此時(shí)算法已找到一個(gè)最優(yōu)解。 286.7 旅行售貨員問題旅行售貨員問題1. 問題描述 某售貨員要到若干城市去推銷商品,已知各城市之間的路程(或旅費(fèi))。他要選定一條從駐地出發(fā),經(jīng)過每個(gè)城市一次,最后回到駐地的路線,使總的路程(或總旅費(fèi))最小。 路線是一個(gè)帶權(quán)圖。圖中各邊的費(fèi)用(權(quán))為正數(shù)。圖的一條周游路線是包括V中的每個(gè)頂點(diǎn)在內(nèi)的一條回路。周游路線的費(fèi)用是這條路線上所有邊的費(fèi)用之和。 旅行售貨員問題的解空間可以組
20、織成一棵樹,從樹的根結(jié)點(diǎn)到任一葉結(jié)點(diǎn)的路徑定義了圖的一條周游路線。旅行售貨員問題要在圖G中找出費(fèi)用最小的周游路線。 296.7 旅行售貨員問題旅行售貨員問題2. 算法描述 算法開始時(shí)創(chuàng)建一個(gè)最小堆,用于表示活結(jié)點(diǎn)優(yōu)先隊(duì)列。堆中每個(gè)結(jié)點(diǎn)的子樹費(fèi)用的下界lcost值是優(yōu)先隊(duì)列的優(yōu)先級(jí)。接著算法計(jì)算出圖中每個(gè)頂點(diǎn)的最小費(fèi)用出邊并用minout記錄。如果所給的有向圖中某個(gè)頂點(diǎn)沒有出邊,則該圖不可能有回路,算法即告結(jié)束。如果每個(gè)頂點(diǎn)都有出邊,則根據(jù)計(jì)算出的minout作算法初始化。 算法的while循環(huán)體完成對(duì)排列樹內(nèi)部結(jié)點(diǎn)的擴(kuò)展。對(duì)于當(dāng)前擴(kuò)展結(jié)點(diǎn),算法分2種情況進(jìn)行處理:306.7 旅行售貨員問題旅行
21、售貨員問題 1、首先考慮s=n-2的情形,此時(shí)當(dāng)前擴(kuò)展結(jié)點(diǎn)是排列樹中某個(gè)葉結(jié)點(diǎn)的父結(jié)點(diǎn)。如果該葉結(jié)點(diǎn)相應(yīng)一條可行回路且費(fèi)用小于當(dāng)前最小費(fèi)用,則將該葉結(jié)點(diǎn)插入到優(yōu)先隊(duì)列中,否則舍去該葉結(jié)點(diǎn)。 2、當(dāng)sn-2時(shí),算法依次產(chǎn)生當(dāng)前擴(kuò)展結(jié)點(diǎn)的所有兒子結(jié)點(diǎn)。由于當(dāng)前擴(kuò)展結(jié)點(diǎn)所相應(yīng)的路徑是x0:s,其可行兒子結(jié)點(diǎn)是從剩余頂點(diǎn)xs+1:n-1中選取的頂點(diǎn)xi,且(xs,xi)是所給有向圖G中的一條邊。對(duì)于當(dāng)前擴(kuò)展結(jié)點(diǎn)的每一個(gè)可行兒子結(jié)點(diǎn),計(jì)算出其前綴(x0:s,xi)的費(fèi)用cc和相應(yīng)的下界lcost。當(dāng)lcostbestc時(shí),將這個(gè)可行兒子結(jié)點(diǎn)插入到活結(jié)點(diǎn)優(yōu)先隊(duì)列中。 316.7 旅行售貨員問題旅行售貨員問
22、題 算法中while循環(huán)的終止條件是排列樹的一個(gè)葉結(jié)點(diǎn)成為當(dāng)前擴(kuò)展結(jié)點(diǎn)。當(dāng)s=n-1時(shí),已找到的回路前綴是x0:n-1,它已包含圖G的所有n個(gè)頂點(diǎn)。因此,當(dāng)s=n-1時(shí),相應(yīng)的擴(kuò)展結(jié)點(diǎn)表示一個(gè)葉結(jié)點(diǎn)。此時(shí)該葉結(jié)點(diǎn)所相應(yīng)的回路的費(fèi)用等于cc和lcost的值。剩余的活結(jié)點(diǎn)的lcost值不小于已找到的回路的費(fèi)用。它們都不可能導(dǎo)致費(fèi)用更小的回路。因此已找到的葉結(jié)點(diǎn)所相應(yīng)的回路是一個(gè)最小費(fèi)用旅行售貨員回路,算法可以結(jié)束。 算法結(jié)束時(shí)返回找到的最小費(fèi)用,相應(yīng)的最優(yōu)解由數(shù)組v給出。 326.8 電路板排列問題電路板排列問題 算法描述 算法開始時(shí),將排列樹的根結(jié)點(diǎn)置為當(dāng)前擴(kuò)展結(jié)點(diǎn)。在do-while循環(huán)體內(nèi)算
23、法依次從活結(jié)點(diǎn)優(yōu)先隊(duì)列中取出具有最小cd值的結(jié)點(diǎn)作為當(dāng)前擴(kuò)展結(jié)點(diǎn),并加以擴(kuò)展。 首先考慮s=n-1的情形,當(dāng)前擴(kuò)展結(jié)點(diǎn)是排列樹中的一個(gè)葉結(jié)點(diǎn)的父結(jié)點(diǎn)。x表示相應(yīng)于該葉結(jié)點(diǎn)的電路板排列。計(jì)算出與x相應(yīng)的密度并在必要時(shí)更新當(dāng)前最優(yōu)值和相應(yīng)的當(dāng)前最優(yōu)解。 當(dāng)sn-1時(shí),算法依次產(chǎn)生當(dāng)前擴(kuò)展結(jié)點(diǎn)的所有兒子結(jié)點(diǎn)。對(duì)于當(dāng)前擴(kuò)展結(jié)點(diǎn)的每一個(gè)兒子結(jié)點(diǎn)node,計(jì)算出其相應(yīng)的密度node.cd。當(dāng)node.cdbestd時(shí),將該兒子結(jié)點(diǎn)N插入到活結(jié)點(diǎn)優(yōu)先隊(duì)列中。336.8 電路板排列問題電路板排列問題算法描述do if (enode.s = n - 1) / 僅一個(gè)兒子結(jié)點(diǎn) int ld = 0; / 最后一塊
24、電路板的密度 for (int j = 1; j = m; j+) ld += board enode.xnj; if (ld bestd) / 找到密度更小的電路板排列 x = enode.x; bestd = Math.max(ld, enode.cd); S=n-1S=n-1的情況,計(jì)算出的情況,計(jì)算出此時(shí)的密度和此時(shí)的密度和bestdbestd進(jìn)進(jìn)行比較。行比較。346.8 電路板排列問題電路板排列問題算法描述else / 產(chǎn)生當(dāng)前擴(kuò)展結(jié)點(diǎn)的所有兒子結(jié)點(diǎn) for (int i = enode.s + 1; i = n; i+) HeapNode node = new HeapNode(
25、0, new int m + 1, 0, new int n + 1); for (int j = 1; j = m; j+) / 新插入的電路板 node.nowj = enode.nowj + board enode.xij;356.8 電路板排列問題電路板排列問題int ld = 0; / 新插入電路板的密度for (int j = 1; j 0 & totalj != node.nowj) ld+;node.cd = Math.max(ld, enode.cd);if (node.cd bestd)/ 可能產(chǎn)生更好的葉結(jié)點(diǎn) node.s = enode.s + 1; for (int j = 1; j =r+1時(shí)依非減序排列,S1則取得極小值。同理如果選擇Pk使t2pk依非減序排列,則S2取得極小值。 ,max212SSFfMii這可以作為優(yōu)先隊(duì)列式分支限界法中的限界函數(shù)。 386.9 批處理作業(yè)問題批處理作業(yè)問題3. 算法描述 算法的while循環(huán)完成對(duì)排列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人挖機(jī)租賃合同范本
- 借款合同范例房產(chǎn)
- 倉(cāng)儲(chǔ)合同范本標(biāo)
- 三基護(hù)理考試模擬題+答案
- 電子技術(shù)及實(shí)訓(xùn)練習(xí)題+答案
- 上半年房地產(chǎn)銷售工作總結(jié)
- 中醫(yī)康復(fù)治療技術(shù)試題庫(kù)+參考答案
- 制作書本合同范本
- 中醫(yī)診所勞務(wù)合同范本
- 一本好書讓我改變自己超越自己演講稿
- 鑒賞詩(shī)歌人物形象市公開課一等獎(jiǎng)省賽課微課金獎(jiǎng)?wù)n件
- 2024年4月自考06088管理思想史試題
- 校園超市經(jīng)營(yíng)投標(biāo)方案(技術(shù)方案)
- 家具拆裝合同
- JTT791-2010 公路涵洞通道用波紋鋼管(板)
- 山東省春季高考技能考試-汽車專業(yè)必刷必練題庫(kù)(600題)
- 2024年黑龍江農(nóng)墾科技職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫(kù)含答案解析
- THHPA 001-2024 盆底康復(fù)管理質(zhì)量評(píng)價(jià)指標(biāo)體系
- 人民音樂家 教案-2023-2024學(xué)年高中人音版(2019)必修《音樂鑒賞》
- 《合理調(diào)節(jié)情緒-做自己情緒的主人》班會(huì)課件
- 20222023學(xué)年山西省朔州市朔城區(qū)七年級(jí)(下)期末語文試卷(解析)
評(píng)論
0/150
提交評(píng)論