




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2.2 2.2 用樣本估計(jì)總體用樣本估計(jì)總體.2.2.2.2用樣本的數(shù)字特征估計(jì)總體的用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征數(shù)字特征 第一課時(shí)第一課時(shí) 問題提出問題提出1.1.對一個(gè)未知總體,我們常用樣本的頻率分對一個(gè)未知總體,我們常用樣本的頻率分布估計(jì)總體的分布,其中表示樣本數(shù)據(jù)的頻布估計(jì)總體的分布,其中表示樣本數(shù)據(jù)的頻率分布的基本方法有哪些?率分布的基本方法有哪些? 2.2.美國美國NBANBA在在2006200720062007年度賽季中,甲、年度賽季中,甲、乙兩名籃球運(yùn)動(dòng)員在隨機(jī)抽取的乙兩名籃球運(yùn)動(dòng)員在隨機(jī)抽取的1212場比賽中場比賽中的得分情況如下:的得分情況如下:甲運(yùn)動(dòng)員得分:甲運(yùn)動(dòng)員
2、得分:1212,1515,2020,2525,3131,3131, 3636,3636,3737,3939,4444,49.49.乙運(yùn)動(dòng)員得分:乙運(yùn)動(dòng)員得分:8 8,1313,1414,1616,2323,2626, 2828,3838,3939,5151,3131,29.29. 如果要求我們根據(jù)上面的數(shù)據(jù),估如果要求我們根據(jù)上面的數(shù)據(jù),估計(jì)、比較甲,乙兩名運(yùn)動(dòng)員哪一位發(fā)計(jì)、比較甲,乙兩名運(yùn)動(dòng)員哪一位發(fā)揮得比較穩(wěn)定,就得有相應(yīng)的數(shù)據(jù)作揮得比較穩(wěn)定,就得有相應(yīng)的數(shù)據(jù)作為比較依據(jù),即通過樣本數(shù)據(jù)對總體為比較依據(jù),即通過樣本數(shù)據(jù)對總體的數(shù)字特征進(jìn)行研究,用樣本的數(shù)字的數(shù)字特征進(jìn)行研究,用樣本的數(shù)字特
3、征估計(jì)總體的數(shù)字特征特征估計(jì)總體的數(shù)字特征. 甲運(yùn)動(dòng)員得分:甲運(yùn)動(dòng)員得分:1212,1515,2020,2525,3131,3131, 3636,3636,3737,3939,4444,49.49.乙運(yùn)動(dòng)員得分:乙運(yùn)動(dòng)員得分:8 8,1313,1414,1616,2323,2626, 2828,3838,3939,5151,3131,29.29.知識探究(一):眾數(shù)、中位數(shù)和平均數(shù)知識探究(一):眾數(shù)、中位數(shù)和平均數(shù) 思考思考1 1:在初中我們學(xué)過眾數(shù)、中位數(shù)和在初中我們學(xué)過眾數(shù)、中位數(shù)和平均數(shù)的概念,這些數(shù)據(jù)都是反映樣本平均數(shù)的概念,這些數(shù)據(jù)都是反映樣本信息的數(shù)字特征,對一組樣本數(shù)據(jù)如何信息
4、的數(shù)字特征,對一組樣本數(shù)據(jù)如何求眾數(shù)、中位數(shù)和平均數(shù)?求眾數(shù)、中位數(shù)和平均數(shù)? 思考思考2 2:在城市居民月均用水量樣本數(shù)據(jù)在城市居民月均用水量樣本數(shù)據(jù)的頻率分布直方圖中,你認(rèn)為眾數(shù)應(yīng)在的頻率分布直方圖中,你認(rèn)為眾數(shù)應(yīng)在哪個(gè)小矩形內(nèi)?由此估計(jì)總體的眾數(shù)是哪個(gè)小矩形內(nèi)?由此估計(jì)總體的眾數(shù)是什么?什么? 月均用水量月均用水量/t頻率頻率組距組距0.50.50.40.40.30.30.20.20.10.10.5 1 1.5 2 2.5 3 3.5 40.5 1 1.5 2 2.5 3 3.5 4 4.5 4.5 O思考思考3 3:在頻率分布直方圖中,每個(gè)小矩在頻率分布直方圖中,每個(gè)小矩形的面積表示什
5、么?中位數(shù)左右兩側(cè)的形的面積表示什么?中位數(shù)左右兩側(cè)的直方圖的面積應(yīng)有什么關(guān)系?直方圖的面積應(yīng)有什么關(guān)系?取最高矩形下端取最高矩形下端中點(diǎn)的橫坐標(biāo)中點(diǎn)的橫坐標(biāo)2.252.25作為眾數(shù)作為眾數(shù). . 思考思考4 4:在城市居民月均用水量樣本數(shù)據(jù)的頻在城市居民月均用水量樣本數(shù)據(jù)的頻率分布直方圖中,從左至右各個(gè)小矩形的面率分布直方圖中,從左至右各個(gè)小矩形的面積分別是積分別是0.040.04,0.080.08,0.150.15,0.220.22,0.250.25,0.140.14,0.060.06,0.040.04,0.02.0.02.由此估計(jì)總體的由此估計(jì)總體的中位數(shù)是什么?中位數(shù)是什么? 月均用水
6、量月均用水量/t頻率頻率組距組距0.50.50.40.40.30.30.20.20.10.10.5 1 1.5 2 2.5 3 3.5 40.5 1 1.5 2 2.5 3 3.5 4 4.5 4.5 O O0.5-0.04-0.08-0.15-0.22=0.010.5-0.04-0.08-0.15-0.22=0.01,0.50.50.10.10.25=0.020.25=0.02,中位數(shù)是,中位數(shù)是2.02.2.02. 思考思考5 5:平均數(shù)是頻率分布直方圖的平均數(shù)是頻率分布直方圖的“重心重心”,在城市居民月均用水量樣本數(shù)據(jù)的頻率分布在城市居民月均用水量樣本數(shù)據(jù)的頻率分布直方圖中,各個(gè)小矩形的
7、重心在哪里?從直直方圖中,各個(gè)小矩形的重心在哪里?從直方圖估計(jì)總體在各組數(shù)據(jù)內(nèi)的平均數(shù)分別為方圖估計(jì)總體在各組數(shù)據(jù)內(nèi)的平均數(shù)分別為多少?多少?0.250.25,0.750.75,1.251.25,1.751.75,2.252.25, 2.752.75,3.253.25,3.753.75,4.25.4.25. 月均用水量月均用水量/t頻率頻率組距組距0.50.50.40.40.30.30.20.20.10.10.5 1 1.5 2 2.5 3 3.5 40.5 1 1.5 2 2.5 3 3.5 4 4.5 4.5 O O思考思考6 6:根據(jù)統(tǒng)計(jì)學(xué)中數(shù)學(xué)期望原理,將頻率根據(jù)統(tǒng)計(jì)學(xué)中數(shù)學(xué)期望原理,
8、將頻率分布直方圖中每個(gè)小矩形的面積與小矩形底分布直方圖中每個(gè)小矩形的面積與小矩形底邊中點(diǎn)的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的邊中點(diǎn)的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)估值平均數(shù). . 由此估計(jì)總體的平均數(shù)是什么?由此估計(jì)總體的平均數(shù)是什么?0.250.250.040.04+ +0.750.750.080.08+ +1.251.250.150.15+ +1.751.750.220.22+ +2.252.250.250.25+ +2.752.750.140.14+ +3.253.25 0.060.06+ +3.753.750.040.04+ +4.254.250.02=2.020.02=2.02
9、(t t). . 平均數(shù)是平均數(shù)是2.02.2.02. 平均數(shù)與中位數(shù)相等,是必然還是巧合?平均數(shù)與中位數(shù)相等,是必然還是巧合?思考思考7 7:從居民月均用水量樣本數(shù)據(jù)可知,該從居民月均用水量樣本數(shù)據(jù)可知,該樣本的眾數(shù)是樣本的眾數(shù)是2.32.3,中位數(shù)是,中位數(shù)是2.02.0,平均數(shù)是,平均數(shù)是1.9731.973,這與我們從樣本頻率分布直方圖得出,這與我們從樣本頻率分布直方圖得出的結(jié)論有偏差,你能解釋一下原因嗎?的結(jié)論有偏差,你能解釋一下原因嗎? 頻率分布直方圖損失了一些樣本數(shù)據(jù),得頻率分布直方圖損失了一些樣本數(shù)據(jù),得到的是一個(gè)估計(jì)值,且所得估值與數(shù)據(jù)分組到的是一個(gè)估計(jì)值,且所得估值與數(shù)據(jù)分
10、組有關(guān)有關(guān). .注注: :在只有樣本頻率分布直方圖的情況下,我在只有樣本頻率分布直方圖的情況下,我們可以按上述方法估計(jì)眾數(shù)、中位數(shù)和平均們可以按上述方法估計(jì)眾數(shù)、中位數(shù)和平均數(shù),并由此估計(jì)總體特征數(shù),并由此估計(jì)總體特征. .思考思考8 8:一組數(shù)據(jù)的中位數(shù)一般不受少數(shù)一組數(shù)據(jù)的中位數(shù)一般不受少數(shù)幾個(gè)極端值的影響,這在某些情況下是幾個(gè)極端值的影響,這在某些情況下是一個(gè)優(yōu)點(diǎn),但它對極端值的不敏感有時(shí)一個(gè)優(yōu)點(diǎn),但它對極端值的不敏感有時(shí)也會(huì)額成為缺點(diǎn),你能舉例說明嗎?樣也會(huì)額成為缺點(diǎn),你能舉例說明嗎?樣本數(shù)據(jù)的平均數(shù)大于(或小于)中位數(shù)本數(shù)據(jù)的平均數(shù)大于(或小于)中位數(shù)說明什么問題?你怎樣理解說明什么
11、問題?你怎樣理解“我們單位我們單位的收入水平比別的單位高的收入水平比別的單位高”這句話的含這句話的含義?義? 如:樣本數(shù)據(jù)收集有個(gè)別差錯(cuò)不影響中如:樣本數(shù)據(jù)收集有個(gè)別差錯(cuò)不影響中位數(shù);大學(xué)畢業(yè)生憑工資中位數(shù)找單位位數(shù);大學(xué)畢業(yè)生憑工資中位數(shù)找單位可能收入較低可能收入較低. . 平均數(shù)大于(或小于)中位數(shù),說明平均數(shù)大于(或小于)中位數(shù),說明樣本數(shù)據(jù)中存在許多較大(或較?。┑臉颖緮?shù)據(jù)中存在許多較大(或較?。┑臉O端值極端值. . 這句話具有模糊性甚至蒙騙性,其中這句話具有模糊性甚至蒙騙性,其中收入水平是員工工資的某個(gè)中心點(diǎn),它收入水平是員工工資的某個(gè)中心點(diǎn),它可以是眾數(shù)、中位數(shù)或平均數(shù)可以是眾數(shù)、
12、中位數(shù)或平均數(shù). .知識探究(二):標(biāo)準(zhǔn)差知識探究(二):標(biāo)準(zhǔn)差 樣本的眾數(shù)、中位數(shù)和平均數(shù)常用來表示樣本樣本的眾數(shù)、中位數(shù)和平均數(shù)常用來表示樣本數(shù)據(jù)的數(shù)據(jù)的“中心值中心值”,其中眾數(shù)和中位數(shù)容易計(jì)算,其中眾數(shù)和中位數(shù)容易計(jì)算,不受少數(shù)幾個(gè)極端值的影響,但只能表達(dá)樣本數(shù)不受少數(shù)幾個(gè)極端值的影響,但只能表達(dá)樣本數(shù)據(jù)中的少量信息據(jù)中的少量信息. 平均數(shù)代表了數(shù)據(jù)更多的信息,平均數(shù)代表了數(shù)據(jù)更多的信息,但受樣本中每個(gè)數(shù)據(jù)的影響,越極端的數(shù)據(jù)對平但受樣本中每個(gè)數(shù)據(jù)的影響,越極端的數(shù)據(jù)對平均數(shù)的影響也越大均數(shù)的影響也越大.當(dāng)樣本數(shù)據(jù)質(zhì)量比較差時(shí),使當(dāng)樣本數(shù)據(jù)質(zhì)量比較差時(shí),使用眾數(shù)、中位數(shù)或平均數(shù)描述數(shù)據(jù)
13、的中心位置,用眾數(shù)、中位數(shù)或平均數(shù)描述數(shù)據(jù)的中心位置,可能與實(shí)際情況產(chǎn)生較大的誤差,難以反映樣本可能與實(shí)際情況產(chǎn)生較大的誤差,難以反映樣本數(shù)據(jù)的實(shí)際狀況,因此,我們需要一個(gè)統(tǒng)計(jì)數(shù)字?jǐn)?shù)據(jù)的實(shí)際狀況,因此,我們需要一個(gè)統(tǒng)計(jì)數(shù)字刻畫樣本數(shù)據(jù)的離散程度刻畫樣本數(shù)據(jù)的離散程度. 思考思考1 1:在一次射擊選拔賽中,甲、乙在一次射擊選拔賽中,甲、乙兩名運(yùn)動(dòng)員各射擊兩名運(yùn)動(dòng)員各射擊1010次,每次命中的環(huán)次,每次命中的環(huán)數(shù)如下:數(shù)如下:甲:甲:7 8 7 9 5 4 9 10 7 47 8 7 9 5 4 9 10 7 4乙:乙:9 5 7 8 7 6 8 6 7 79 5 7 8 7 6 8 6 7 7
14、甲、乙兩人本次射擊的平均成績分甲、乙兩人本次射擊的平均成績分別為多少環(huán)?別為多少環(huán)?77乙甲, xx77乙甲, xx77乙甲, xx思考思考2 2:甲、乙兩人射擊的平均成績相等,觀甲、乙兩人射擊的平均成績相等,觀察兩人成績的頻率分布條形圖,你能說明其察兩人成績的頻率分布條形圖,你能說明其水平差異在那里嗎?水平差異在那里嗎?環(huán)數(shù)環(huán)數(shù)頻率頻率0.40.40.30.30.20.20.10.14 5 6 7 8 9 104 5 6 7 8 9 10 O O(甲)(甲)環(huán)數(shù)環(huán)數(shù)頻率頻率0.40.40.30.30.20.20.10.14 5 6 7 8 9 104 5 6 7 8 9 10 O O(乙)(
15、乙)甲的成績比較分散,極差較大,乙的甲的成績比較分散,極差較大,乙的成績相對集中,比較穩(wěn)定成績相對集中,比較穩(wěn)定. .思考思考3 3:對于樣本數(shù)據(jù)對于樣本數(shù)據(jù)x x1 1,x x2 2,x xn n,設(shè)想通過各數(shù)據(jù)到其平均數(shù)的平均距離設(shè)想通過各數(shù)據(jù)到其平均數(shù)的平均距離來反映樣本數(shù)據(jù)的分散程度,那么這個(gè)來反映樣本數(shù)據(jù)的分散程度,那么這個(gè)平均距離如何計(jì)算?平均距離如何計(jì)算? 12| |nxxxxxxn-+-+-L思考思考4 4:反映樣本數(shù)據(jù)的分散程度的大小,最反映樣本數(shù)據(jù)的分散程度的大小,最常用的統(tǒng)計(jì)量是標(biāo)準(zhǔn)差,一般用常用的統(tǒng)計(jì)量是標(biāo)準(zhǔn)差,一般用s s表示表示. .假設(shè)假設(shè)樣本數(shù)據(jù)樣本數(shù)據(jù)x x1
16、 1,x x2 2,x xn n的平均數(shù)為,則標(biāo)準(zhǔn)的平均數(shù)為,則標(biāo)準(zhǔn)差的計(jì)算公式是:差的計(jì)算公式是:22212()()()nxxxxxxsn-+-+-=L 那么標(biāo)準(zhǔn)差的取值范圍是什么?標(biāo)準(zhǔn)差為那么標(biāo)準(zhǔn)差的取值范圍是什么?標(biāo)準(zhǔn)差為0 0的樣本數(shù)據(jù)有何特點(diǎn)?的樣本數(shù)據(jù)有何特點(diǎn)? s0s0,標(biāo)準(zhǔn)差為,標(biāo)準(zhǔn)差為0 0的樣本數(shù)據(jù)都相等的樣本數(shù)據(jù)都相等. . 思考思考5 5:對于一個(gè)容量為對于一個(gè)容量為2 2的樣本:的樣本:x x1 1,x x2 2(x(x1 1x x2 2) ),則,則 , , 在數(shù)軸上,這兩個(gè)統(tǒng)計(jì)數(shù)據(jù)有什么幾何意義?在數(shù)軸上,這兩個(gè)統(tǒng)計(jì)數(shù)據(jù)有什么幾何意義?由此說明標(biāo)準(zhǔn)差的大小對數(shù)據(jù)的
17、離散程度有由此說明標(biāo)準(zhǔn)差的大小對數(shù)據(jù)的離散程度有何影響?何影響? 122xxx+=212xxs-=標(biāo)準(zhǔn)差越大離散程度越大,數(shù)據(jù)較分散;標(biāo)準(zhǔn)差越大離散程度越大,數(shù)據(jù)較分散;標(biāo)準(zhǔn)差越小離散程度越小,數(shù)據(jù)較集中標(biāo)準(zhǔn)差越小離散程度越小,數(shù)據(jù)較集中在平均數(shù)周圍在平均數(shù)周圍. . 知識遷移知識遷移 s s甲甲=2=2,s s乙乙=1.095. =1.095. 計(jì)算甲、乙兩名運(yùn)動(dòng)員的射擊成績的計(jì)算甲、乙兩名運(yùn)動(dòng)員的射擊成績的標(biāo)準(zhǔn)差,比較其射擊水平的穩(wěn)定性標(biāo)準(zhǔn)差,比較其射擊水平的穩(wěn)定性. 甲:甲:7 8 7 9 5 4 9 10 7 47 8 7 9 5 4 9 10 7 4乙:乙:9 5 7 8 7 6 8 6 7 79 5 7 8 7 6 8 6 7 7小結(jié)作業(yè)小結(jié)作業(yè)1.1.用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征,用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征,是指用樣本的眾數(shù)、中位數(shù)、平均
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中小學(xué)家長會(huì)合作計(jì)劃
- 2025年中國專業(yè)對講機(jī)市場調(diào)查研究報(bào)告
- 小學(xué)階段線上教育中的學(xué)困生關(guān)懷計(jì)劃
- 2025年中國中型執(zhí)手鎖市場調(diào)查研究報(bào)告
- 2025年中國70%玉米芯型氯化膽堿市場調(diào)查研究報(bào)告
- 廠房租賃合同范本
- 小學(xué)班主任與家長溝通計(jì)劃
- 七年級語文課外拓展計(jì)劃
- 2025蘇教版-五年級數(shù)學(xué)上冊-跨學(xué)科項(xiàng)目計(jì)劃
- 中班藝術(shù)教育活動(dòng)計(jì)劃
- 9端午粽 一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)(第二課時(shí))
- 酒店住宿水單模板1
- 研發(fā)項(xiàng)目立項(xiàng)申請書模板
- 人行道改造工程設(shè)計(jì)說明
- 四川省中小流域暴雨洪水計(jì)算表格(尾礦庫洪水計(jì)算)
- 夫妻通用離婚協(xié)議書電子版(四篇)
- 施工安全監(jiān)督方案實(shí)用文檔
- 施工現(xiàn)場危險(xiǎn)源告知書
- 認(rèn)知起道搗固作業(yè)的定義主要內(nèi)容使用范圍以及技術(shù)標(biāo)準(zhǔn)
- 消費(fèi)者行為學(xué)智慧樹知到答案章節(jié)測試2023年浙江大學(xué)
- 社會(huì)組織負(fù)責(zé)人備案表(民非)
評論
0/150
提交評論