圓錐曲線共線向量問題_第1頁
圓錐曲線共線向量問題_第2頁
圓錐曲線共線向量問題_第3頁
圓錐曲線共線向量問題_第4頁
圓錐曲線共線向量問題_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上共線向量問題解析幾何中的向量共線,就是將向量問題轉(zhuǎn)化為同類坐標(biāo)的比例問題,再通過未達(dá)定理-同類坐標(biāo)變換,將問題解決。此類問題不難解決。例題7、設(shè)過點D(0,3)的直線交曲線M:于P、Q兩點,且,求實數(shù)的取值范圍。分析:由可以得到,將P(x1,y1),Q(x2,y2),代人曲線方程,解出點的坐標(biāo),用表示出來。解:設(shè)P(x1,y1),Q(x2,y2),,(x1,y1-3)=(x2,y2-3),即方法一:方程組消元法,又P、Q是橢圓+=1上的點消去x2,可得,即y2=又2y22,22解之得:則實數(shù)的取值范圍是。方法二:判別式法、韋達(dá)定理法、配湊法設(shè)直線PQ的方程為:,由消y

2、整理后,得P、Q是曲線M上的兩點,即 由韋達(dá)定理得:即 由得,代入,整理得,解之得當(dāng)直線PQ的斜率不存在,即時,易知或??傊畬崝?shù)的取值范圍是。方法總結(jié):通過比較本題的第二步的兩種解法,可知第一種解法,比較簡單,第二種方法是通性通法,但計算量較大,縱觀高考中的解析幾何題,若放在后兩題,很多情況下能用通性通法解,但計算量較大,計算繁瑣,考生必須有較強(qiáng)的意志力和極強(qiáng)的計算能力;不用通性通法,要求考生必須深入思考,有較強(qiáng)的思維能力,在命題人設(shè)計的框架中,找出破解的蛛絲馬跡,通過自己的思維將問題解決。例題8:已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點恰好是拋物線的焦點,離心率為(1)求橢圓C的標(biāo)

3、準(zhǔn)方程;(2)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若, ,求的值分析:(07福建理科)如圖,已知點(1,0),直線l:x1,P為平面上的動點,過作直線l的垂線,垂足為點,且()求動點的軌跡C的方程;()過點F的直線交軌跡C于A、B兩點,交直線l于點M,已知,求的值。小題主要考查直線、拋物線、向量等基礎(chǔ)知識,考查軌跡方程的求法以及研究曲線幾何特征的基本方法,考查運算能力和綜合解題能力.滿分14分.解法一:()設(shè)點,則,由得:,化簡得.()設(shè)直線的方程為: .設(shè),又,聯(lián)立方程組,消去得:,故由,得:,整理得:,解法二:()由得:,所以點的軌跡是拋物線,由題意,軌跡的方程為

4、:.()由已知,得.則:.過點分別作準(zhǔn)線的垂線,垂足分別為,則有:.由得:,即.練習(xí):設(shè)橢圓的左、右焦點分別為、,A是橢圓C上的一點,且,坐標(biāo)原點O到直線的距離為(1)求橢圓C的方程;(2)設(shè)Q是橢圓C上的一點,過Q的直線l交x軸于點,較y軸于點M,若,求直線l的方程山東2006理雙曲線C與橢圓有相同的焦點,直線y=為C的一條漸近線。(I) 求雙曲線C的方程;(II)過點P(0,4)的直線,交雙曲線C于A,B兩點,交x軸于Q點(Q點與C的頂點不重合)。當(dāng),且時,求Q點的坐標(biāo)。解:()解法一:由題意知直線的斜率存在且不等于零。設(shè)的方程:,則在雙曲線上,同理有:若則直線過頂點,不合題意.是二次方程

5、的兩根.,此時.所求的坐標(biāo)為.解法二:由題意知直線的斜率存在且不等于零設(shè)的方程,則.,分的比為.由定比分點坐標(biāo)公式得下同解法一解法三:由題意知直線的斜率存在且不等于零設(shè)的方程:,則.,.,又,即,將代入得,否則與漸近線平行。解法四:由題意知直線l得斜率k存在且不等于零,設(shè)的方程:,則,。同理,.即(*)又,消去y得.當(dāng)時,則直線l與雙曲線得漸近線平行,不合題意,。由韋達(dá)定理有:代入(*)式得所求Q點的坐標(biāo)為。練習(xí):已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點恰好是拋物線的焦點,離心率等于。(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點P為橢圓上一點,弦PA、PB分別過焦點F1、F2,(PA、PB都不與x軸垂直,其點P的縱坐標(biāo)不為0),若,求的值。解:(1)設(shè)橢圓C的方程為:,則b=1,由,得,則橢圓的方程為:(2)由得:,設(shè),有得:解得:,根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論