




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第二章第二章結(jié)構(gòu)相似理論結(jié)構(gòu)相似理論教學課程實驗應力分析哈爾濱工業(yè)大學土木工程學院2012年11月16日2.1 概述力學分析理論計算實驗研究原型試驗模型試驗模型試驗是將發(fā)生在原型中的力學過程,在物理相似條件下,經(jīng)縮小(或放大)后在模型上重演。對模型中的力學參數(shù)進行測量、記錄、分析,并根據(jù)相似關(guān)系換算到原型中去,達到研究原型力學過程的目的。模型試驗模型試驗Akashi Kaikyo Bridge, Japan明石頭海峽大橋,日本模型試驗模型試驗模型試驗模型試驗航空航天領(lǐng)域UCSD-NEES 室外振動臺實驗原型試驗原型試驗日本,E-Defense振動系統(tǒng),“足尺三維振動破壞實驗設施”模型試驗的優(yōu)點
2、:經(jīng)濟性好模型尺寸小針對性強突出主要因素,略去次要因素數(shù)據(jù)準確室內(nèi)試驗模型試驗的應用:代替大型結(jié)構(gòu)試驗或作為大型結(jié)構(gòu)試驗的輔助試驗。作為結(jié)構(gòu)分析計算的輔助手段。驗證和發(fā)展結(jié)構(gòu)計算理論。模型試驗的理論基礎結(jié)構(gòu)相似理論2.2 模型的相似物理量和物理現(xiàn)象的相似2. 物理現(xiàn)象相似是指除了幾何相似之外,在進行物理過程的系統(tǒng)中,在相應的地點(位置)和對應的時刻,模型與原型的各相應物理量之間的比例應保持常數(shù)。1. 物理量相似 各種物理量,如幾何,質(zhì)量,力等。在兩個系統(tǒng)中,所有向量在對應點和對應時刻方向相同、大小成比例,所有標量也在對應點和對應時刻成比例2.2.1基本概念2.2.2 物理量的相似1.幾何相似要
3、求模型與原型結(jié)構(gòu)之間所對應部分的尺寸成比例。幾何尺寸之比稱為幾何相似常數(shù)。mmmlppplbhSlbhlSlbhmp幾何相似常數(shù)、 、結(jié)構(gòu)的長、寬、高三個方向的線性尺寸、分別代表模型和原型2mmmAlpppAhbSSAhb對一矩形截面,模型和原型結(jié)構(gòu)的面積相似常數(shù)、截面抵抗矩相似常數(shù)和慣性矩相似常數(shù)分別為2321616mpmmpWplbhWWbShS343112112mpIlmmppbhIIbShS 面積相似常數(shù)截面抵抗矩相似常數(shù)慣性矩相似常數(shù)相似常數(shù)2.質(zhì)量相似要求模型與原型結(jié)構(gòu)對應部分質(zhì)量成比例。質(zhì)量之比稱為質(zhì)量相似常數(shù)。pmmmmS對于具有分布質(zhì)量部分,用質(zhì)量密度表示。pmS3lSSSS
4、SmVm質(zhì)量密度相似常數(shù)3.荷載相似要求模型與原型在各對應點所受的荷載方向一致,大小成比例。集中荷載相似常數(shù)線荷載相似常數(shù)面荷載相似常數(shù)彎矩或扭矩相似常數(shù)2lSSAAPPSPPmmpmplSSS3lMSSSqSS4.物理相似 要求模型與原型的各相應點的應力和應變、剛度和變形間的關(guān)系相似。數(shù)。應變和泊松比的相似常剪應力、剪切模量、剪應變、正應力、彈性模量、正SSSSSSSGE,mmmGpPPGSSSGmpSmmmEpPPESSSE5.時間相似 pmtttS 時間相似常數(shù)對于結(jié)構(gòu)的動力問題,在隨時間變化的過程中,要求模型與原型在對應時刻進行比較,要求相對應的時間成比例。6.邊界條件相似 要求模型與
5、原型在與外界接觸的區(qū)域內(nèi)的各種條件(支承條件、約束條件和邊界上的受力情況等)保持相似。7.初始條件相似動力問題 要求模型與原型在初始時刻的運動參數(shù)相似。 初始幾何位置、質(zhì)點的位移、速度和加速度。模型上的速度、加速度和原型的速度和加速度在對應的位置和對應的時刻保持一定的比例,并且運動方向一致。與原型結(jié)構(gòu)構(gòu)造相同的條件2.3.結(jié)構(gòu)相似定理FmpFS F以牛頓第二定律為例來說明第一相似定理性質(zhì)對于原型: (1)力相似常數(shù)如果模型與原型相似,則各對應物理量成比例: 對于模型 (2)pppaMF mmmaMFmmpmS mmapaS a質(zhì)量相似常數(shù)加速度相似常數(shù) (3)2.3.1.第一相似定理pppam
6、FamFSSSpmppmmFFidemm am a將(3)代入(2),與(1)相比有:稱這一無量綱量為相似準數(shù),也稱相似判決,相似系統(tǒng)相似準數(shù)相同emFmaid1FmaSS S無量綱值相似指標(4)將(3)代入(4)(4)式為判別模型與原型是否相似的條件,稱為相似指標,若兩個物理系統(tǒng)現(xiàn)象相似,則它們的相似指標為1。去掉角標,寫成一般形式:已知系統(tǒng)相似確定相似條件第一相似定理:彼此相似的現(xiàn)象,以相似常數(shù)組成的受現(xiàn)象制約的相似指標等于1或相同文字組成的相似準數(shù)為一不變量。相似常數(shù):在兩相似現(xiàn)象中,兩個對應的物理量之比為常數(shù)。相似指標:由彼此相似現(xiàn)象中各相似常數(shù)組成的無量綱量,彼此相似的現(xiàn)象都滿足相
7、似指標等于1的條件。相似準數(shù):在所有相似的現(xiàn)象中是一個不變量,無量綱量,所有相似的系統(tǒng)相似準數(shù)應相等。幾個重要概念小結(jié)2.3.2 方程分析法 利用描述現(xiàn)象的基本微分方程組導出相似準數(shù)(判據(jù))。具體步驟:第一步:將方程對于原型寫出,加角標 p;第二步:將方程對于模型寫出,加角標 m;第三步:定義模型和原型同名物理量間的相似常數(shù);第四步:將模型方程中各物理量以相似常數(shù)和原型中對應物理量表示。第五步:比較原型與模型方程,消去原型方程中的各物理量,即得到無量綱形式的相似指標和相應的相似準數(shù)(判據(jù))。例1:單自由度系統(tǒng)有阻尼受迫振動相似準數(shù)的導出。振動微分方程如下: 22d ydymckypdtdt解:
8、對于原型系統(tǒng)振動微分方程22pppppppppd ydymck ypdtdt22mmmmmmmmmd ydymck ypdtdt對于模型系統(tǒng)振動微分方程,mmmmmmmckytpppppppmckytpSSSSSSmckytp 各物理量的相似常數(shù)為,mmpmcpmkpmppmt pmppmS mcS ckS kyS ytS tpS p模型系統(tǒng)各物理量為將上式代入模型系統(tǒng),得:222ypypmpcpkypppptptpSd ySdySmScS Sk ySpSdtSdt2yymckypttSSSSS SSSS222ypypmpcpkypppptptpSd ySdySmScS Sk ySpSdtSd
9、t與原型系統(tǒng)相比較,得:由上式得222mycyttmykytmyptS SS SSSS SS SSS SSS122222311, 1,ctmktmptmyS SSS SSS SSctSmktmptmy22pppppppppd ydymck ypdtdtPLa()()pppppppppppMP LaMPLaWW例2:一懸臂梁結(jié)構(gòu),在梁端作用一集中荷載 P,截面高 h,寬 b,求相似準數(shù)。解:對于原型結(jié)構(gòu),在任意截面 a處彎矩、正應力和撓度為:2(3)6pppppppP afLaE I()()mmmmmmmmmmmMP LaMPLaWW2(3)6mmmmmmmP afLaE I模型方程,mmmmm
10、EpMfpppppEPMfSSSSSEPMf22()()(3)6mmmmmmmMPllpfmmmmElpmmmmmSS SS SSS S SMP LaPLaWP afLaESI將以上各式代入原型系統(tǒng)方程,則相似系統(tǒng)的結(jié)構(gòu)相似常數(shù)為34,mmllmmmmlwIpppppplahbSSSlahWISSIbW將上式并與模型系統(tǒng)相比較,得相似準數(shù)如下2111MPllpfElpSS SS SSS S SS1223MPLLPfELP2mmpMplmlpmpmElpmfpMMMSS SSSSfS SffSS由相似條件得到原型受力分布323(2)24()2()2q xyLLxxEIq xMLxq xLxW例3
11、:受均布載荷 q 作用的簡支梁在截面 x 處的撓度、彎矩和正應力如下,求相似準數(shù)。解:原型系統(tǒng)方程323(2)24()2()2pppppppppppppppppppq xyLL xxE Iq xMLxq xLxW相似系統(tǒng)的對應各物理量的相似常數(shù)為:43,mmmmmyMqlpppppmmmmlEIlWlppppyMqxSSSSSyMqxLEIWSSSSSSLEIW模型系統(tǒng)方程323(2)24()2()2mmmmmmmmmmmmmmmmmmmmq xyLL xxE Iq xMLxq xLxW將模型系統(tǒng)各物理量代入上式43234223(2)24()2()2qlElqlqllppypppppppppM
12、PPPppppppS S q xS yLL xxS S E IS S q xS MLxS S q xSLxSW43,mypmMpmpmpmlpqmlpmEpmlpmlpyS yMS MSqS qxS xLS LES EIS IWS W模型系統(tǒng)各物理量為1223EyqMq llq整理得2111EyqMlqlqS SSSS SS SS3223(2)24()2()2EqqlqyMlpppppppppppPPPppppppS SSSS Sq xyLL xxE Iq xMLxq xS SSLxW則相似條件為2.4.1.基本概念量綱:物理量的種類量綱表示:麥克斯韋爾符號,比如L,M,T,表示長度,質(zhì)量和時
13、間的量綱。2.4 量綱分析法量綱只區(qū)分物理量得種類,而不區(qū)分同一物理量得不同量度單位,如:5m,500cm。同名物理量具有相同的量綱。質(zhì)量系統(tǒng):長度L、時間T、質(zhì)量M絕對系統(tǒng):長度L、時間T、力F無量綱量:物理量無量綱,用1表示。基本量綱:具有獨立性的量綱,任何一個量綱不可能由其他量綱組成。導出量綱:所研究物理過程中全部有關(guān)物理量都可由這組基本量綱表示,任何物理量B的量綱可寫成B=FLT速度=長度/時間 V=LT-1力=質(zhì)量加速度=質(zhì)量長度/時間 F=MLT-2常用物理量的量綱2.4.2.2.4.2.第二相似定理(第二相似定理( 定理)定理)物理方程量綱均勻性:物理方程是反映客觀物理現(xiàn)象規(guī)律的
14、各物理量的關(guān)系式,方程中各項的量綱必須相相等,并應使用同一度量單位。只有相同的量綱才能相加減,并用算術(shù)符號連接起來。(量綱和諧原理)物理方程量綱的齊次性:當量度單位發(fā)生改變時,方程的結(jié)構(gòu)形式不變的性質(zhì)稱為物理方程量綱的其次那性。u 量綱的均勻性,齊次性若在一個物理方程中共有n個物理參數(shù)x1, x2, , xn和k個基本量綱,則可組成(n-k)個獨立的無量綱組合。無量綱參數(shù)組合簡稱“ 數(shù)”,則此方程可改寫為(n-k)個數(shù)的方程,即:0),(21nxxxf12(,.,)0n kF 把表示物理過程的方程轉(zhuǎn)換成由相似準數(shù)表示的方程。u 第二相似定理 假設一物理現(xiàn)象的關(guān)系方程為:f(x1,x2,xn)=
15、0,式中x1, x2, xn為n個物理量,其中k個為基本量綱,(n-k)個為導出量綱。k個基本量綱為:100112.kxx xx00112.kkxx xx010212.kxx xx11111212.nknknkkknkxxxxxxxxn-k 個導出量的量綱可用基本量綱表示:若把物理量 x1, x2, xk 的度量單位各縮小1/a1, 1/a2, , 1/ak,并取 a1, a2, ak 為任意數(shù)值,則在新的單位系統(tǒng)中各物理量的數(shù)值變?yōu)椋?11111121 1211n kn kn kkkkkknknkxa xxa xxxa aaaxaax將它們代入到物理方程中,則有:0).,.,.,.,(111
16、11211212211nkkkkkxaaaxaaaxaxaxafkn111112.kkxx xx為減少自變量數(shù)目,取 a1=1/x1, a2=1/x2, , ak=1/xk12(,1,1,.,1.,)0n kf 111112112.n kn kn kknn kkkx xxxxxxx這樣基本量量綱之比、數(shù)值之比都等于1;導出量數(shù)值之比為1,量綱之比等于無量綱數(shù) i 。12( , ,.,) 0n kF 12(1 ,1 ,.,1 , , ,.,) 0n kf 可寫成如果表示物理現(xiàn)象的方程中,包含 n 個物理量,其中k個具有或包含獨立量綱,于是 k 個可選為基本量,經(jīng)過變換,該物理現(xiàn)象可由 n-k 個
17、物理量綜合數(shù)群關(guān)系式來表示,這就是 定理,又稱第二相似定理。例4:單自由度系統(tǒng)有阻尼受迫振動導出相似準數(shù) ( , , , , , )0f m y t c k p 解1:設現(xiàn)象中各物理量的關(guān)系方程如下:1111cm y t取m,y,t為量綱獨立的物理量,有:2222kmy t3333pm y t各物理量的量綱: Mm 2 MLTp 2 MTk 1 MTc Tt Ly 由無量綱量 1、2 、3 得比較可得 111222333122MTMLTMTMLTMLTMLT 1112223331,0,11,0,21,1,2 22123,ctktptmmmy所以由于 數(shù)對于相似的物理現(xiàn)象具有不變的形式,故模型設
18、計時需模型物理量與原型物理量滿足下式,即:2222,p pm mmpp pm mmpp pm mmmppc tc tmmk tk tmmp tp tm ym y將各物理量的相似常數(shù)代入上式,即得相似條件221, 11,ctmktmptmyS SSS SSS SS S解2:設現(xiàn)象中各物理量的關(guān)系方程如下:( , , , , , )0f m y t c k p 物理量個數(shù) n=6, 用絕對系統(tǒng),基本量綱3個,則 函數(shù)為:123(,)0 所有物理量組成無量綱形式的 數(shù)的一般形式為:356124aaaaaam c ky tp1211 , , , , mFL TcFL TkFLyLtTpF查表得物理量的
19、量綱代入上式得35612412111 aaaaaaFL TFL TFLLTF根據(jù)量綱和諧要求,對量綱 F、L、T 有123123412560200aaaaaaaaaaa假若確定a1 , a4, a5,則:2153145642aaaaaaaaa 故無量綱 數(shù)可寫為:15141455415422aaaaaaaaaaaamkkytkcpcm cky tp,可得三個獨立 數(shù):451511445,0,00,00,0,111aaaaaaaaa分別取22123,ctktptmmmy與方法1結(jié)果比較:根據(jù)第一相似定理,故模型設計時需模型物理量與原型物理量滿足下式,即:22,ppmmmpppmmmpp pm m
20、mpm km kcck yk yppk tk tcc將各物理量的相似常數(shù)代入上式,即得相似條件2, 1,11mkcmypktcS SSS SSS SS例5:對受集中載荷的簡支梁導出相似準數(shù) ( , , ,)0PlfMW解:受豎向荷載作用的梁的正截面應力 是梁的跨徑 l,截面抗彎模量 W,梁上作用荷載 P 和彎矩 M 的函數(shù),這些物理量的之間關(guān)系可寫成一般形式:物理量個數(shù) n=5, 基本量綱 k=2個,則 函數(shù)為:123(,)0 所有物理量組成無量綱形式的 數(shù)的一般形式為:abc deP M l W23 , , FLMFLWLlLpF查表得各物理量的量綱則量綱矩陣 根據(jù)量綱和諧要求,對量綱 L、
21、F 有2300acdeabc確定a、b、d,則1133cabeabd a b c d e P M l WL -2 0 1 1 3F 1 1 1 0 0 故無量綱 數(shù)可寫為:11331313abdababbdadWPP Ml WWlMMW 可得三個獨立 數(shù):1312313,WPWlMMW1,0,00,1,00,0,1abdabdabd分別取圖示為欄河水壩在動力作用下,考慮結(jié)構(gòu)的自重及彈性力、慣性力、動水壓力影響后,結(jié)構(gòu)的應力、振幅、頻率、加速度、幾何尺寸、材料密度、液體密度、重力加速度、材料彈性模量、泊松比的關(guān)系應滿足:例6:分析如圖示的動力模型實驗的相似準數(shù) 0),(EgLafuf解:取 , f, L 為量綱獨立的物理量,則十個物理量的量綱為:122332112 , , , , , , 1 , ML TuLaLTMLgfTMLTEMLTLLL,7776665554443332221117654321,fLfLEfLgfLfLafLufL解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高端SUV抵押貸款合同樣本
- 高墩滑模施工精度控制
- 國家文化安全教育
- 腫瘤內(nèi)科健康教育
- 做有溫度的教育
- 腫瘤醫(yī)院進修個人總結(jié)
- 學校團隊精神培訓
- 中醫(yī)保健及護理
- 排尿護理方法教案
- 種雞養(yǎng)殖培訓課件
- 信息用戶管理制度
- 十五五智慧校園建設發(fā)展規(guī)劃
- 河南省豫地科技集團招聘筆試真題2024
- 兒童創(chuàng)意民族紋飾課件
- 廣東省廣州市增城區(qū)2023-2024學年八年級下學期期末數(shù)學試題(含答案)
- 廣東省廣州市番禺區(qū)2022-2023學年三年級下學期數(shù)學期末試卷(含答案)
- 養(yǎng)老項目商業(yè)計劃書
- 2025年新高考1卷(新課標Ⅰ)數(shù)學試卷
- 河南信息產(chǎn)業(yè)投資有限公司招聘考試真題2024
- 離婚協(xié)議書正規(guī)打印電子版(2025年版)
- 石家莊市國企招聘考試真題題庫2024版
評論
0/150
提交評論