




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、實驗十 遺傳算法與優(yōu)化問題一、問題背景與實驗目的遺傳算法(Genetic AlgorithmGA),是模擬達爾文的遺傳選擇和自然淘汰的生物進化過程的計算模型,它是由美國Michigan大學的J.Holland教授于1975年首先提出的遺傳算法作為一種新的全局優(yōu)化搜索算法,以其簡單通用、魯棒性強、適于并行處理及應用范圍廣等顯著特點,奠定了它作為21世紀關鍵智能計算之一的地位本實驗將首先介紹一下遺傳算法的基本理論,然后用其解決幾個簡單的函數(shù)最值問題,使讀者能夠?qū)W會利用遺傳算法進行初步的優(yōu)化計算1遺傳算法的基本原理遺傳算法的基本思想正是基于模仿生物界遺傳學的遺傳過程它把問題的參數(shù)用基因代表,把問題的
2、解用染色體代表(在計算機里用二進制碼表示),從而得到一個由具有不同染色體的個體組成的群體這個群體在問題特定的環(huán)境里生存競爭,適者有最好的機會生存和產(chǎn)生后代后代隨機化地繼承了父代的最好特征,并也在生存環(huán)境的控制支配下繼續(xù)這一過程群體的染色體都將逐漸適應環(huán)境,不斷進化,最后收斂到一族最適應環(huán)境的類似個體,即得到問題最優(yōu)的解值得注意的一點是,現(xiàn)在的遺傳算法是受生物進化論學說的啟發(fā)提出的,這種學說對我們用計算機解決復雜問題很有用,而它本身是否完全正確并不重要(目前生物界對此學說尚有爭議)(1)遺傳算法中的生物遺傳學概念由于遺傳算法是由進化論和遺傳學機理而產(chǎn)生的直接搜索優(yōu)化方法;故而在這個算法中要用到各
3、種進化和遺傳學的概念首先給出遺傳學概念、遺傳算法概念和相應的數(shù)學概念三者之間的對應關系這些概念如下:序號遺傳學概念遺傳算法概念數(shù)學概念1個體要處理的基本對象、結(jié)構也就是可行解2群體個體的集合被選定的一組可行解3染色體個體的表現(xiàn)形式可行解的編碼4基因染色體中的元素編碼中的元素5基因位某一基因在染色體中的位置元素在編碼中的位置6適應值個體對于環(huán)境的適應程度,或在環(huán)境壓力下的生存能力可行解所對應的適應函數(shù)值7種群被選定的一組染色體或個體根據(jù)入選概率定出的一組可行解8選擇從群體中選擇優(yōu)勝的個體,淘汰劣質(zhì)個體的操作保留或復制適應值大的可行解,去掉小的可行解9交叉一組染色體上對應基因段的交換根據(jù)交叉原則產(chǎn)
4、生的一組新解10交叉概率染色體對應基因段交換的概率(可能性大?。╅]區(qū)間0,1上的一個值,一般為0.650.9011變異染色體水平上基因變化編碼的某些元素被改變12變異概率染色體上基因變化的概率(可能性大?。╅_區(qū)間(0,1)內(nèi)的一個值, 一般為0.0010.0113進化、適者生存?zhèn)€體進行優(yōu)勝劣汰的進化,一代又一代地優(yōu)化目標函數(shù)取到最大值,最優(yōu)的可行解(2)遺傳算法的步驟遺傳算法計算優(yōu)化的操作過程就如同生物學上生物遺傳進化的過程,主要有三個基本操作(或稱為算子):選擇(Selection)、交叉(Crossover)、變異(Mutation)遺傳算法基本步驟主要是:先把問題的解表示成“染色體”,在
5、算法中也就是以二進制編碼的串,在執(zhí)行遺傳算法之前,給出一群“染色體”,也就是假設的可行解然后,把這些假設的可行解置于問題的“環(huán)境”中,并按適者生存的原則,從中選擇出較適應環(huán)境的“染色體”進行復制,再通過交叉、變異過程產(chǎn)生更適應環(huán)境的新一代“染色體”群經(jīng)過這樣的一代一代地進化,最后就會收斂到最適應環(huán)境的一個“染色體”上,它就是問題的最優(yōu)解下面給出遺傳算法的具體步驟,流程圖參見圖1:第一步:選擇編碼策略,把參數(shù)集合(可行解集合)轉(zhuǎn)換染色體結(jié)構空間;第二步:定義適應函數(shù),便于計算適應值;第三步:確定遺傳策略,包括選擇群體大小,選擇、交叉、變異方法以及確定交叉概率、變異概率等遺傳參數(shù);第四步:隨機產(chǎn)生
6、初始化群體;第五步:計算群體中的個體或染色體解碼后的適應值;第六步:按照遺傳策略,運用選擇、交叉和變異算子作用于群體,形成下一代群體;第七步:判斷群體性能是否滿足某一指標、或者是否已完成預定的迭代次數(shù),不滿足則返回第五步、或者修改遺傳策略再返回第六步產(chǎn)生初始群體是否滿足終止條件得到結(jié)果結(jié)束程序是否計算每個個體的適應值以概率選擇遺傳算子選擇一個個體復制到新群體選擇兩個個體進行交叉插入到新群體選擇一個個體進行變異插入到新群體得到新群體圖1 一個遺傳算法的具體步驟遺傳算法有很多種具體的不同實現(xiàn)過程,以上介紹的是標準遺傳算法的主要步驟,此算法會一直運行直到找到滿足條件的最優(yōu)解為止2遺傳算法的實際應用例
7、1:設,求 注:這是一個非常簡單的二次函數(shù)求極值的問題,相信大家都會做在此我們要研究的不是問題本身,而是借此來說明如何通過遺傳算法分析和解決問題在此將細化地給出遺傳算法的整個過程(1)編碼和產(chǎn)生初始群體首先第一步要確定編碼的策略,也就是說如何把到2這個區(qū)間內(nèi)的數(shù)用計算機語言表示出來編碼就是表現(xiàn)型到基因型的映射,編碼時要注意以下三個原則:完備性:問題空間中所有點(潛在解)都能成為GA編碼空間中的點(染色體位串)的表現(xiàn)型;健全性:GA編碼空間中的染色體位串必須對應問題空間中的某一潛在解;非冗余性:染色體和潛在解必須一一對應這里我們通過采用二進制的形式來解決編碼問題,將某個變量值代表的個體表示為一個
8、0,1二進制串當然,串長取決于求解的精度如果要設定求解精度到六位小數(shù),由于區(qū)間長度為,則必須將閉區(qū)間 分為等分因為 所以編碼的二進制串至少需要22位將一個二進制串(b21b20b19b1b0)轉(zhuǎn)化為區(qū)間內(nèi)對應的實數(shù)值很簡單,只需采取以下兩步(Matlab程序參見附錄4):1)將一個二進制串(b21b20b19b1b0)代表的二進制數(shù)化為10進制數(shù):2) 對應的區(qū)間內(nèi)的實數(shù):2=2288967利用這種方法我們就完成了遺傳算法的第一步編碼,這種二進制編碼的方法完全符合上述的編碼的三個原則首先我們來隨機的產(chǎn)生一個個體數(shù)為4個的初始群體如下:pop(1)=<>, % a1<>,
9、 % a2<>, % a3<> % a4(Matlab程序參見附錄2)化成十進制的數(shù)分別為:pop(1)= 1.523032,0.574022 ,-0.697235 ,0.247238 接下來我們就要解決每個染色體個體的適應值問題了(2)定義適應函數(shù)和適應值由于給定的目標函數(shù)在內(nèi)的值有正有負,所以必須通過建立適應函數(shù)與目標函數(shù)的映射關系,保證映射后的適應值非負,而且目標函數(shù)的優(yōu)化方向應對應于適應值增大的方向,也為以后計算各個體的入選概率打下基礎對于本題中的最大化問題,定義適應函數(shù),采用下述方法:式中既可以是特定的輸入值,也可以是當前所有代或最近K代中的最小值,這里為了便
10、于計算,將采用了一個特定的輸入值若取,則當時適應函數(shù);當時適應函數(shù)由上述所隨機產(chǎn)生的初始群體,我們可以先計算出目標函數(shù)值分別如下(Matlab程序參見附錄3):f pop(1)= 1.226437 , 1.318543 , -1.380607 , 0.933350 然后通過適應函數(shù)計算出適應值分別如下(Matlab程序參見附錄5、附錄6):取,gpop(1)= 2.226437 , 2.318543 , 0 , 1.933350 (3)確定選擇標準這里我們用到了適應值的比例來作為選擇的標準,得到的每個個體的適應值比例叫作入選概率其計算公式如下:對于給定的規(guī)模為n的群體pop=,個體的適應值為,
11、則其入選概率為由上述給出的群體,我們可以計算出各個個體的入選概率首先可得 ,然后分別用四個個體的適應值去除以,得:P(a1)=2.226437 / 6.478330 = 0.343675 % a1P(a2)=2.318543 / 6.478330 = 0.357892 % a2P(a3)= 0 / 6.478330 = 0 % a3P(a4)=1.933350 / 6.478330 = 0.298433 % a4(Matlab程序參見附錄7)(4)產(chǎn)生種群計算完了入選概率后,就將入選概率大的個體選入種群,淘汰概率小的個體,并用入選概率最大的個體補入種群,得到與原群體大小同樣的種群(Matlab
12、程序參見附錄8、附錄11)要說明的是:附錄11的算法與這里不完全相同為保證收斂性,附錄11的算法作了修正,采用了最佳個體保存方法(elitist model),具體內(nèi)容將在后面給出介紹由初始群體的入選概率我們淘汰掉a3,再加入a2補足成與群體同樣大小的種群得到newpop(1)如下:newpop(1)=<>, % a1<>, % a2<>, % a2<> % a4(5)交叉交叉也就是將一組染色體上對應基因段的交換得到新的染色體,然后得到新的染色體組,組成新的群體(Matlab程序參見附錄9)我們把之前得到的newpop(1)的四個個體兩兩組成一對
13、,重復的不配對,進行交叉(可以在任一位進行交叉)<110101110 >, <> 交叉得:<100001100 >, <>< 01000010>, <> 交叉得:< 10010101>, <>通過交叉得到了四個新個體,得到新的群體jchpop (1)如下:jchpop(1)=<>,<>,<>,<>這里采用的是單點交叉的方法,當然還有多點交叉的方法,不過有些煩瑣,這里就不著重介紹了(6)變異變異也就是通過一個小概率改變?nèi)旧w位串上的某個基因(Matlab
14、程序參見附錄10)現(xiàn)把剛得到的jchpop(1)中第3個個體中的第9位改變,就產(chǎn)生了變異,得到了新的群體pop(2)如下:pop(2)= <>,<>,<100001101>,<> 然后重復上述的選擇、交叉、變異直到滿足終止條件為止(7)終止條件遺傳算法的終止條件有兩類常見條件:(1)采用設定最大(遺傳)代數(shù)的方法,一般可設定為50代,此時就可能得出最優(yōu)解此種方法簡單易行,但可能不是很精確(Matlab程序參見附錄1);(2)根據(jù)個體的差異來判斷,通過計算種群中基因多樣性測度,即所有基因位相似程度來進行控制3遺傳算法的收斂性前面我們已經(jīng)就遺傳算法中
15、的編碼、適應度函數(shù)、選擇、交叉和變異等主要操作的基本內(nèi)容及設計進行了詳細的介紹作為一種搜索算法,遺傳算法通過對這些操作的適當設計和運行,可以實現(xiàn)兼顧全局搜索和局部搜索的所謂均衡搜索,具體實現(xiàn)見下圖2所示圖2 均衡搜索的具體實現(xiàn)圖示應該指出的是,遺傳算法雖然可以實現(xiàn)均衡的搜索,并且在許多復雜問題的求解中往往能得到滿意的結(jié)果,但是該算法的全局優(yōu)化收斂性的理論分析尚待解決目前普遍認為,標準遺傳算法并不保證全局最優(yōu)收斂但是,在一定的約束條件下,遺傳算法可以實現(xiàn)這一點下面我們不加證明地羅列幾個定理或定義,供讀者參考(在這些定理的證明中,要用到許多概率論知識,特別是有關馬爾可夫鏈的理論,讀者可參閱有關文獻
16、)定理1 如果變異概率為,交叉概率為,同時采用比例選擇法(按個體適應度占群體適應度的比例進行復制),則標準遺傳算法的變換矩陣P是基本的定理2 標準遺傳算法(參數(shù)如定理1)不能收斂至全局最優(yōu)解由定理2可以知道,具有變異概率,交叉概率為以及按比例選擇的標準遺傳算法是不能收斂至全局最最優(yōu)解我們在前面求解例1時所用的方法就是滿足定理1的條件的方法這無疑是一個令人沮喪的結(jié)論然而,慶幸的是,只要對標準遺傳算法作一些改進,就能夠保證其收斂性具體如下:我們對標準遺傳算法作一定改進,即不按比例進行選擇,而是保留當前所得的最優(yōu)解(稱作超個體)該超個體不參與遺傳最佳個體保存方法(elitist model)的思想是
17、把群體中適應度最高的個體不進行配對交叉而直接復制到下一代中此種選擇操作又稱復制(copy)De Jong對此方法作了如下定義:定義 設到時刻t(第t代)時,群體中a*(t)為最佳個體又設A(t1)為新一代群體,若A(t1)中不存在a*(t),則把a*(t)作為A(t1)中的第n+1個個體(其中,n為群體大?。∕atlab程序參見附錄11)采用此選擇方法的優(yōu)點是,進化過程中某一代的最優(yōu)解可不被交叉和變異操作所破壞但是,這也隱含了一種危機,即局部最優(yōu)個體的遺傳基因會急速增加而使進化有可能限于局部解也就是說,該方法的全局搜索能力差,它更適合單峰性質(zhì)的搜索空間搜索,而不是多峰性質(zhì)的空間搜索所以此方法
18、一般都與其他選擇方法結(jié)合使用定理3 具有定理1所示參數(shù),且在選擇后保留當前最優(yōu)值的遺傳算法最終能收斂到全局最優(yōu)解當然,在選擇算子作用后保留當前最優(yōu)解是一項比較復雜的工作,因為該解在選擇算子作用后可能丟失但是定理3至少表明了這種改進的遺傳算法能夠收斂至全局最優(yōu)解有意思的是,實際上只要在選擇前保留當前最優(yōu)解,就可以保證收斂,定理4描述了這種情況定理4 具有定理1參數(shù)的,且在選擇前保留當前最優(yōu)解的遺傳算法可收斂于全局最優(yōu)解例2:設,求 ,編碼長度為5,采用上述定理4所述的“在選擇前保留當前最優(yōu)解的遺傳算法”進行此略,留作練習二、相關函數(shù)(命令)及簡介本實驗的程序中用到如下一些基本的Matlab函數(shù):
19、ones, zeros, sum, size, length, subs, double 等,以及 for, while 等基本程序結(jié)構語句,讀者可參考前面專門關于Matlab的介紹,也可參考其他數(shù)學實驗章節(jié)中的“相關函數(shù)(命令)及簡介”內(nèi)容,此略三、實驗內(nèi)容上述例1的求解過程為:群體中包含六個染色體,每個染色體用22位01碼,變異概率為0.01,變量區(qū)間為 ,取Fmin=,遺傳代數(shù)為50代,則運用第一種終止條件(指定遺傳代數(shù))的Matlab程序為:Count,Result,BestMember=Genetic1(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01
20、,50)執(zhí)行結(jié)果為:Count = 50Result = 1.0316 1.0316 1.0316 1.0316 1.0316 1.0316 1.4990 1.4990 1.4990 1.4990 1.4990 1.4990BestMember = 1.0316 1.4990圖2 例1的計算結(jié)果(注:上圖為遺傳進化過程中每一代的個體最大適應度;而下圖為目前為止的個體最大適應度單調(diào)遞增)我們通過Matlab軟件實現(xiàn)了遺傳算法,得到了這題在第一種終止條件下的最優(yōu)解:當取1.0316時,當然這個解和實際情況還有一點出入(應該是取1時,),但對于一個計算機算法來說已經(jīng)很不錯了我們也可以編制Matlab
21、程序求在第二種終止條件下的最優(yōu)解此略,留作練習實踐表明,此時的遺傳算法只要經(jīng)過10代左右就可完成收斂,得到另一個“最優(yōu)解”,與前面的最優(yōu)解相差無幾四、自己動手1 用Matlab編制另一個主程序Genetic2.m,求例1的在第二種終止條件下的最優(yōu)解提示:一個可能的函數(shù)調(diào)用形式以及相應的結(jié)果為:Count,Result,BestMember=Genetic2(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,0.00001)Count = 13Result = 1.0392 1.0392 1.0392 1.0392 1.0392 1.0392 1.4985 1.4
22、985 1.4985 1.4985 1.4985 1.4985BestMember = 1.0392 1.4985可以看到:兩組解都已經(jīng)很接近實際結(jié)果,對于兩種方法所產(chǎn)生的最優(yōu)解差異很小可見這兩種終止算法都是可行的,而且可以知道對于例1的問題,遺傳算法只要經(jīng)過10代左右就可以完成收斂,達到一個最優(yōu)解2 按照例2的具體要求,用遺傳算法求上述例2的最優(yōu)解3 附錄9子程序 Crossing.m中的第3行到第7行為注解語句若去掉前面的%號,則程序的算法思想有什么變化?4 附錄9子程序 Crossing.m中的第8行至第13行的程序表明,當Dim(1)>=3時,將交換數(shù)組Population的最后
23、兩行,即交換最后面的兩個個體其目的是什么?5 仿照附錄10子程序Mutation.m,修改附錄9子程序 Crossing.m,使得交叉過程也有一個概率值(一般取0.650.90);同時適當修改主程序Genetic1.m或主程序Genetic2.m,以便代入交叉概率6 設,求 ,要設定求解精度到15位小數(shù)五、附錄附錄1:主程序Genetic1.mfunction Count,Result,BestMember=Genetic1(MumberLength,MemberNumber,FunctionFitness,MinX,MaxX,Fmin,MutationProbability,Gen)Popu
24、lation=PopulationInitialize(MumberLength,MemberNumber);global Count;global CurrentBest;Count=1;PopulationCode=Population;PopulationFitness=Fitness(PopulationCode,FunctionFitness,MinX,MaxX,MumberLength);PopulationFitnessF=FitnessF(PopulationFitness,Fmin);PopulationProbability=Probability(PopulationFi
25、tnessF);Population,CurrentBest,EachGenMaxFitness=Elitist(PopulationCode,PopulationFitness,MumberLength);EachMaxFitness(Count)=EachGenMaxFitness;MaxFitness(Count)=CurrentBest(length(CurrentBest);while Count<Gen NewPopulation=Select(Population,PopulationProbability,MemberNumber); Population=NewPopu
26、lation; NewPopulation=Crossing(Population,FunctionFitness,MinX,MaxX,MumberLength); Population=NewPopulation; NewPopulation=Mutation(Population,MutationProbability); Population=NewPopulation; PopulationFitness=Fitness(Population,FunctionFitness,MinX,MaxX,MumberLength); PopulationFitnessF=FitnessF(Pop
27、ulationFitness,Fmin); PopulationProbability=Probability(PopulationFitnessF); Count=Count+1; NewPopulation,CurrentBest,EachGenMaxFitness=Elitist(Population,PopulationFitness,MumberLength); EachMaxFitness(Count)=EachGenMaxFitness; MaxFitness(Count)=CurrentBest(length(CurrentBest); Population=NewPopula
28、tion;endDim=size(Population);Result=ones(2,Dim(1);for i=1:Dim(1) Result(1,i)=Translate(Population(i,:),MinX,MaxX,MumberLength);endResult(2,:)=PopulationFitness;BestMember(1,1)=Translate(CurrentBest(1:MumberLength),MinX,MaxX,MumberLength);BestMember(2,1)=CurrentBest(MumberLength+1);close allsubplot(2
29、11)plot(EachMaxFitness)subplot(212)plot(MaxFitness)【程序說明】主程序Genetic1.m包含了8個輸入?yún)?shù):(1) MumberLength: 表示一個染色體位串的二進制長度(例1中取22)(2) MemberNumber: 表示群體中染色體的個數(shù)(例1中取6個)(3) FunctionFitness: 表示目標函數(shù),是個字符串,因此用表達式時,用單引號括出(例1中是)(4) MinX: 變量區(qū)間的下限(例1中是中的)(5) MaxX: 變量區(qū)間的上限(例1中是中的 2)(6) Fmin: 定義適應函數(shù)過程中給出的一個目標函數(shù)的可能的最小值,
30、由操作者自己給出(例1中取Fmin=)(7) MutationProbability: 表示變異的概率,一般都很?。ɡ?中取0.01)(8) Gen: 表示遺傳的代數(shù),也就是終止程序時的代數(shù)(例1中取50)另外,主程序Genetic1.m包含了3個輸出值: Count 表示遺傳的代數(shù);Result 表示計算的結(jié)果,也就是最優(yōu)解;BestMember表示最優(yōu)個體及其適應值附錄2:子程序 PopulationInitialize.mfunction Population=PopulationInitialize(MumberLength,MemberNumber)Temporary=rand(Me
31、mberNumber,MumberLength);Population=(Temporary>=0.5*ones(size(Temporary);【程序說明】子程序 PopulationInitialize.m用于產(chǎn)生一個初始群體這個初始群體含有MemberNumber個染色體,每個染色體有MumberLength個基因(二進制碼)附錄3:子程序Fitness.mfunction PopulationFitness=Fitness(PopulationCode,FunctionFitness,MinX,MaxX,MumberLength)Dim=size(PopulationCode);
32、PopulationFitness=zeros(1,Dim(1);for i=1:Dim(1)PopulationFitness(i)=Transfer(PopulationCode(i,:),FunctionFitness,MinX,MaxX,MumberLength);end【程序說明】子程序Fitness.m用于計算群體中每一個染色體的目標函數(shù)值子程序中含有5個輸入?yún)?shù):PopulationCode表示用01代碼表示的群體,F(xiàn)unctionFitness 表示目標函數(shù),它是一個字符串,因此寫入調(diào)用程序時,應該用單引號括出,MumberLength表示染色體位串的二進制長度MinX和Max
33、X 分別指變量區(qū)間的上下限附錄4:子程序 Translate.mfunction PopulationData=Translate(PopulationCode,MinX,MaxX,MumberLength)PopulationData=0;Dim=size(PopulationCode);for i=1:Dim(2) PopulationData=PopulationData+PopulationCode(i)*(2(MumberLength-i);endPopulationData=MinX+PopulationData*(MaxX-MinX)/(2Dim(2)-1);【程序說明】子程序
34、Translate.m把編成碼的群體翻譯成變量的數(shù)值含有4個輸入?yún)?shù),PopulationCode, MinX, MaxX, MumberLength附錄5:子程序Transfer.mfunction PopulationFitness=Transfer(PopulationCode,FunctionFitness,MinX,MaxX,MumberLength)PopulationFitness=0;PopulationData=Translate(PopulationCode,MinX,MaxX,MumberLength);PopulationFitness=double(subs(Func
35、tionFitness,'x',sym(PopulationData); 【程序說明】子程序 Transfer 把群體中的染色體的目標函數(shù)值用數(shù)值表示出來,它是Fitness的重要子程序其有5個輸入?yún)?shù)分別為PopulationCode, FunctionFitness, MinX, MaxX,MumberLength附錄6:子程序FitnessF.mfunction PopulationFitnessF=FitnessF(PopulationFitness,Fmin)Dim=size(PopulationFitness);PopulationFitnessF=zeros(1,
36、Dim(2);for i=1:Dim(2)if PopulationFitness(i)>Fmin PopulationFitnessF(i)=PopulationFitness(i)-Fmin;endif PopulationFitness(i)<=Fmin PopulationFitnessF(i)=0;endend【程序說明】子程序FitnessF.m是用于計算每個染色體的適應函數(shù)值的其輸入?yún)?shù)如下:PopulationFitness 為群體中染色體的目標函數(shù)值,F(xiàn)min為定義適應函數(shù)過程中給出的一個目標函數(shù)的可能的最小值附錄7:子程序 Probability.mfuncti
37、on PopulationProbability=Probability(PopulationFitness)SumPopulationFitness=sum(PopulationFitness);PopulationProbability=PopulationFitness/SumPopulationFitness;【程序說明】子程序 Probability.m 用于計算群體中每個染色體的入選概率,輸入?yún)?shù)為群體中染色體的適應函數(shù)值PopulationFitness附錄8:子程序 Select.mfunction NewPopulation=Select(Population,Populat
38、ionProbability,MemberNumber)CProbability(1)=PopulationProbability(1);for i=2:MemberNumber CProbability(i)=CProbability(i-1)+PopulationProbability(i);endfor i=1:MemberNumber r=rand(1); Index=1; while r>CProbability(Index) Index=Index+1; end NewPopulation(i,:)=Population(Index,:);end【程序說明】子程序 Selec
39、t.m 根據(jù)入選概率(計算累計概率)在群體中按比例選擇部分染色體組成種群,該子程序的3個輸入?yún)?shù)分別為:群體Population,入選概率PopulationProbability,群體中染色體的個數(shù)MemberNumber附錄9:子程序 Crossing.mfunction NewPopulation=Crossing(Population,FunctionFitness,MinX,MaxX,MumberLength)%PopulationFitness=% Fitness(Population,FunctionFitness,MinX,MaxX,MumberLength);%Populat
40、ionProbability=Probability(PopulationFitness);%SortResult,SortSite=sort(PopulationProbability);%Population=Population(SortSite,:);Dim=size(Population);if Dim(1)>=3 Temp=Population(Dim(1),:); Population(Dim(1),:)=Population(Dim(1)-1,:); Population(Dim(1)-1,:)=Temp;endfor i=1:2:Dim(1)-1 SiteArray=randperm(Dim(2); Site=SiteArray(1); Temp=Population(i,1:Site); Population(i,1:S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租憑產(chǎn)車協(xié)議書
- 用工賠償協(xié)議書
- 終止供暖協(xié)議書
- 小飯桌用品轉(zhuǎn)讓協(xié)議書
- 現(xiàn)任查前任離婚協(xié)議書
- 酒店賣卡協(xié)議書
- 曹妃甸綜合保稅協(xié)議書
- 船舶買賣協(xié)議書
- 戀愛一年期合同協(xié)議書
- 土地承包權分配協(xié)議書
- 大金D型水冷螺桿機說明書
- 五方責任主體授權書和承諾書
- 《泵站運行工》word版
- 食藥同源-PPT課件(PPT 55頁)
- 山東大學畢業(yè)論文答辯通用ppt模板
- 汽車零部件規(guī)范申報ppt課件
- 項目驗收單簡潔模板
- 榆林智能礦山項目招商引資方案【參考范文】
- 碘對比劑過敏性休克應急搶救演練記錄
- 餐飲商鋪工程條件一覽表
- 液壓的爬模檢查記錄簿表
評論
0/150
提交評論