深圳市南山附中九年級上第一次月考數(shù)學(xué)試卷含解析_第1頁
深圳市南山附中九年級上第一次月考數(shù)學(xué)試卷含解析_第2頁
深圳市南山附中九年級上第一次月考數(shù)學(xué)試卷含解析_第3頁
深圳市南山附中九年級上第一次月考數(shù)學(xué)試卷含解析_第4頁
深圳市南山附中九年級上第一次月考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2016-2017學(xué)年廣東省深圳市北師大南山附中九年級(上)第一次月考數(shù)學(xué)試卷一、選擇題1方程x2=3x的解是()Ax=3Bx1=0,x2=3Cx1=1,x2=3Dx=02已知直角三角形的兩條直角邊分別是3和4,則它斜邊上的中線長為()A2.4B2.5C3D53下列關(guān)于x的一元二次方程有實(shí)數(shù)根的是()Ax2+1=0Bx2+x+1=0Cx2x+1=0Dx2x1=04如圖,在ABC中,點(diǎn)D、E分別在AB、AC邊上,且DEBC,若AD:DB=3:1,AE=6,則AC等于()A3B4C6D85設(shè)x1,x2是一元二次方程x22x3=0的兩根,則x12+x22=()A6B8C10D126如圖,下列條件不能

2、判定ADBABC的是()AABD=ACBBADB=ABCCAB2=ADACD =7下列命題中,假命題的是()A四邊形的外角和等于內(nèi)角和B所有的矩形都相似C對角線相等的菱形是正方形D對角線互相垂直的平行四邊形是菱形8關(guān)于x的方程kx2+2x1=0有實(shí)數(shù)根,則k的取值范圍是()Ak1Bk1且k0Ck1Dk1且k09順次連結(jié)對角線相等的四邊形的四邊中點(diǎn)所得圖形是()A正方形B矩形C菱形D以上都不對10如圖,某小區(qū)有一塊長為18米,寬為6米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為60米2,兩塊綠地之間及周邊留有寬度相等的人行通道若設(shè)人行道的寬度為x米,則可以列出關(guān)于x的方程是()

3、Ax2+9x8=0Bx29x8=0Cx29x+8=0D2x29x+8=011下列4×4的正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點(diǎn)都在格點(diǎn)上,則與ABC相似的三角形所在的網(wǎng)格圖形是()ABCD12如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BEAC于點(diǎn)F,連接DF,分析下列四個結(jié)論:AEFCAB; CF=2AF; DF=DC; S四邊形CDEF=SAEF,其中正確的結(jié)論有()個ABCD二、填空題:13若=3(b+d+f0),則=14已知關(guān)于x的方程x2+3x+a=0有一個根為2,則另一個根為15已知三角形兩邊的長是6和8,第三邊的長是方程x216x+60=0的一個根,則該三角形的

4、面積是16如圖,已知正方形ABCD的邊長為4,點(diǎn)E、F分別在邊AB,BC上,且AE=BF=1,則OC=三、解答題(本大題有7題,共52分)17用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?)x2+6x7=0 (2)2x2+4x3=018如圖,已知菱形ABCD中,對角線AC、BD相交于點(diǎn)O,過點(diǎn)C作CEBD,過點(diǎn)D作DEAC,CE與DE相交于點(diǎn)E(1)求證:四邊形CODE是矩形;(2)若AB=5,AC=6,求四邊形CODE的周長19已知:如圖,在ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),ADE=C(1)求證:BDECAD;(2)若CD=2,求BE的長20某超市經(jīng)銷一種成本為40元/kg的水

5、產(chǎn)品,市場調(diào)查發(fā)現(xiàn),按50元/kg銷售,一個月能售出500kg經(jīng)市場調(diào)查,銷售單價每漲1元,月銷售量就減少10kg,針對這種水產(chǎn)品的銷售情況,超市在月成本不超過10000元的情況下,使得月銷售利潤達(dá)到8000元,請你幫忙算算,銷售單價定為多少?21如圖,有長為22米的籬笆,一面利用墻(墻的最大可用長度為14米),圍成中間隔有一道籬笆的長方形花圃,為了方便出入,在建造籬笆花圃時,在BC上用其他材料造了寬為1米的兩個小門(1)設(shè)花圃的寬AB為x米,請你用含x的代數(shù)式表示BC的長米;(2)若此時花圃的面積剛好為45m2,求此時花圃的寬22如圖,ABC中,C=90°,AC=3cm,BC=4c

6、m,動點(diǎn)P從點(diǎn)B出發(fā)以2cm/s速度向點(diǎn)c移動,同時動點(diǎn)Q從C出發(fā)以1cm/s的速度向點(diǎn)A移動,設(shè)它們的運(yùn)動時間為t(1)根據(jù)題意知:CQ=,CP=;(用含t的代數(shù)式表示)(2)t為何值時,CPQ的面積等于ABC面積的?(3)運(yùn)動幾秒時,CPQ與CBA相似?23如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x27x+12=0的兩個根,且OAOB(1)求A、B的坐標(biāo)(2)求證:射線AO是BAC的平分線(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫出F點(diǎn)的坐標(biāo),若不存在,請說

7、明理由2016-2017學(xué)年廣東省深圳市北師大南山附中九年級(上)第一次月考數(shù)學(xué)試卷參考答案與試題解析一、選擇題1方程x2=3x的解是()Ax=3Bx1=0,x2=3Cx1=1,x2=3Dx=0【考點(diǎn)】解一元二次方程-因式分解法【分析】移項(xiàng),分解因式,即可得出兩個一元一次方程,求出方程的解即可【解答】解:x2=3x,x23x=0,x(x3)=0,x=0,x3=0,x1=0,x2=3,故選B【點(diǎn)評】本題考查了解一元二次方程的應(yīng)用,能把一元二次方程轉(zhuǎn)化成一元一次方程是解此題的關(guān)鍵2已知直角三角形的兩條直角邊分別是3和4,則它斜邊上的中線長為()A2.4B2.5C3D5【考點(diǎn)】勾股定理;直角三角形斜

8、邊上的中線【分析】利用勾股定理列式求出斜邊的長,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答【解答】解:由勾股定理得,斜邊=5,所以,斜邊上中線長=×5=2.5故選:B【點(diǎn)評】本題考查了直角三角形斜邊上的中線等于斜邊的一半,勾股定理,是基礎(chǔ)題,熟記性質(zhì)是解題的關(guān)鍵3下列關(guān)于x的一元二次方程有實(shí)數(shù)根的是()Ax2+1=0Bx2+x+1=0Cx2x+1=0Dx2x1=0【考點(diǎn)】根的判別式【專題】計算題【分析】計算出各項(xiàng)中方程根的判別式的值,找出根的判別式的值大于等于0的方程即可【解答】解:A、這里a=1,b=0,c=1,=b24ac=40,方程沒有實(shí)數(shù)根,本選項(xiàng)不合題意;B、這里a=1

9、,b=1,c=1,=b24ac=14=30,方程沒有實(shí)數(shù)根,本選項(xiàng)不合題意;C、這里a=1,b=1,c=1,=b24ac=14=30,方程沒有實(shí)數(shù)根,本選項(xiàng)不合題意;D、這里a=1,b=1,c=1,=b24ac=1+4=50,方程有兩個不相等實(shí)數(shù)根,本選項(xiàng)符合題意;故選D【點(diǎn)評】此題考查了根的判別式,熟練掌握根的判別式的意義是解本題的關(guān)鍵4如圖,在ABC中,點(diǎn)D、E分別在AB、AC邊上,且DEBC,若AD:DB=3:1,AE=6,則AC等于()A3B4C6D8【考點(diǎn)】平行線分線段成比例【分析】根據(jù)平行線分線段成比例定理,列出比例式求解即可得到答案【解答】解:AD:DB=3:1,AD:AB=3:

10、4,DEBC,AC=8,故選D【點(diǎn)評】此題考查了平行線分線段成比例定理的運(yùn)用,熟練利用平行線分線段成比例定理是解題關(guān)鍵5設(shè)x1,x2是一元二次方程x22x3=0的兩根,則x12+x22=()A6B8C10D12【考點(diǎn)】根與系數(shù)的關(guān)系【分析】根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1x2=3,再變形x12+x22得到(x1+x2)22x1x2,然后利用代入計算即可【解答】解:一元二次方程x22x3=0的兩根是x1、x2,x1+x2=2,x1x2=3,x12+x22=(x1+x2)22x1x2=222×(3)=10故選C【點(diǎn)評】本題考查了一元二次方程ax2+bx+c=0(a0)的根與系數(shù)

11、的關(guān)系:若方程的兩根為x1,x2,則x1+x2=,x1x2=6如圖,下列條件不能判定ADBABC的是()AABD=ACBBADB=ABCCAB2=ADACD =【考點(diǎn)】相似三角形的判定【分析】根據(jù)有兩個角對應(yīng)相等的三角形相似,以及根據(jù)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似,分別判斷得出即可【解答】解:A、ABD=ACB,A=A,ABCADB,故此選項(xiàng)不合題意;B、ADB=ABC,A=A,ABCADB,故此選項(xiàng)不合題意;C、AB2=ADAC, =,A=A,ABCADB,故此選項(xiàng)不合題意;D、=不能判定ADBABC,故此選項(xiàng)符合題意故選:D【點(diǎn)評】本題考查了相似三角形的判定,利用了有兩個角對應(yīng)相

12、等的三角形相似,兩邊對應(yīng)成比例且夾角相等的兩個三角形相似7下列命題中,假命題的是()A四邊形的外角和等于內(nèi)角和B所有的矩形都相似C對角線相等的菱形是正方形D對角線互相垂直的平行四邊形是菱形【考點(diǎn)】命題與定理【分析】利用多邊形的外角和、相似圖形的判定、正方形的判定及菱形的判定分別判斷后即可確定正確的選項(xiàng)【解答】解:A、四邊形的外角和與內(nèi)角和相等,正確,是真命題;B、所有的矩形都相似,錯誤,是假命題;C、對角線相等的菱形是正方形,正確,是真命題;D、對角線互相垂直的平行四邊形是菱形,正確,是真命題,故選B【點(diǎn)評】本題考查了命題與定理的知識,解題的關(guān)鍵是了解多邊形的外角和、相似圖形的判定、正方形的判

13、定及菱形的判定,難度不大8關(guān)于x的方程kx2+2x1=0有實(shí)數(shù)根,則k的取值范圍是()Ak1Bk1且k0Ck1Dk1且k0【考點(diǎn)】根的判別式【分析】由于k的取值范圍不能確定,故應(yīng)分k=0和k0兩種情況進(jìn)行解答【解答】解:(1)當(dāng)k=0時,6x+9=0,解得x=;(2)當(dāng)k0時,此方程是一元二次方程,關(guān)于x的方程kx2+2x1=0有實(shí)數(shù)根,=224k×(1)0,解得k1,由(1)、(2)得,k的取值范圍是k1故選:A【點(diǎn)評】本題考查了根的判別式,解答此題時要注意分k=0和k0兩種情況進(jìn)行討論9順次連結(jié)對角線相等的四邊形的四邊中點(diǎn)所得圖形是()A正方形B矩形C菱形D以上都不對【考點(diǎn)】中點(diǎn)

14、四邊形【分析】作出圖形,根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EF=AC,GH=AC,HE=BD,F(xiàn)G=BD,再根據(jù)四邊形的對角線相等可可知AC=BD,從而得到EF=FG=GH=HE,再根據(jù)四條邊都相等的四邊形是菱形即可得解【解答】解:如圖,E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點(diǎn),根據(jù)三角形的中位線定理,EF=AC,GH=AC,HE=BD,F(xiàn)G=BD,連接AC、BD,四邊形ABCD的對角線相等,AC=BD,所以,EF=FG=GH=HE,所以,四邊形EFGH是菱形故選C【點(diǎn)評】本題考查了菱形的判定和三角形的中位線的應(yīng)用,熟記性質(zhì)和判定定理是解此題的關(guān)鍵

15、,注意:有四條邊都相等的四邊形是菱形作圖要注意形象直觀10如圖,某小區(qū)有一塊長為18米,寬為6米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為60米2,兩塊綠地之間及周邊留有寬度相等的人行通道若設(shè)人行道的寬度為x米,則可以列出關(guān)于x的方程是()Ax2+9x8=0Bx29x8=0Cx29x+8=0D2x29x+8=0【考點(diǎn)】由實(shí)際問題抽象出一元二次方程【專題】幾何圖形問題【分析】設(shè)人行道的寬度為x米,根據(jù)矩形綠地的面積之和為60米2,列出一元二次方程【解答】解:設(shè)人行道的寬度為x米,根據(jù)題意得,(183x)(62x)=60,化簡整理得,x29x+8=0故選C【點(diǎn)評】本題考查了由實(shí)

16、際問題抽象出一元二次方程,利用兩塊相同的矩形綠地面積之和為60米2得出等式是解題關(guān)鍵11下列4×4的正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點(diǎn)都在格點(diǎn)上,則與ABC相似的三角形所在的網(wǎng)格圖形是()ABCD【考點(diǎn)】相似三角形的判定【專題】網(wǎng)格型【分析】根據(jù)勾股定理求出ABC的三邊,并求出三邊之比,然后根據(jù)網(wǎng)格結(jié)構(gòu)利用勾股定理求出三角形的三邊之比,再根據(jù)三邊對應(yīng)成比例,兩三角形相似選擇答案【解答】解:根據(jù)勾股定理,AB=2,BC=,AC=,所以ABC的三邊之比為:2: =1:2:,A、三角形的三邊分別為2, =, =3,三邊之比為2:3=:3,故A選項(xiàng)錯誤;B、三角形的三邊分別為2

17、,4, =2,三邊之比為2:4:2=1:2:,故B選項(xiàng)正確;C、三角形的三邊分別為2,3, =,三邊之比為2:3:,故C選項(xiàng)錯誤;D、三角形的三邊分別為=, =,4,三邊之比為:4,故D選項(xiàng)錯誤故選:B【點(diǎn)評】本題主要考查了相似三角形的判定與網(wǎng)格結(jié)構(gòu)的知識,根據(jù)網(wǎng)格結(jié)構(gòu)分別求出各三角形的三條邊的長,并求出三邊之比是解題的關(guān)鍵12如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BEAC于點(diǎn)F,連接DF,分析下列四個結(jié)論:AEFCAB; CF=2AF; DF=DC; S四邊形CDEF=SAEF,其中正確的結(jié)論有()個ABCD【考點(diǎn)】四邊形綜合題【分析】四邊形ABCD是矩形,BEAC,則ABC=AFB=9

18、0°,又BAF=CAB,于是AEFCAB,故正確;由AE=AD=BC,又ADBC,所以=,故正確;過D作DMBE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故正確;根據(jù)AEFCBF得到=,求出SAEF=SABF,SABF=S矩形ABCDS四邊形CDEF=SACDSAEF=S矩形ABCDS矩形ABCD=S矩形ABCD,即可得到S四邊形CDEF=SABF,故正確【解答】解:過D作DMBE交AC于N,四邊形ABCD是矩形,ADBC,ABC=90°,AD=BC,BEAC于點(diǎn)F,EAC=ACB,ABC=AFE=

19、90°,AEFCAB,故正確;ADBC,AEFCBF,=,AE=AD=BC,=,CF=2AF,故正確,DEBM,BEDM,四邊形BMDE是平行四邊形,BM=DE=BC,BM=CM,CN=NF,BEAC于點(diǎn)F,DMBE,DNCF,DF=DC,故正確;AEFCBF,=,SAEF=SABF,SABF=S矩形ABCDSAEF=S矩形ABCD,又S四邊形CDEF=SACDSAEF=S矩形ABCDS矩形ABCD=S矩形ABCD,S四邊形CDEF=SABF,故正確;故選D【點(diǎn)評】本題考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算,正確的作出輔助線是解題的關(guān)鍵二、填空題:13若=3(b+d

20、+f0),則=3【考點(diǎn)】比例的性質(zhì)【分析】根據(jù)等比性質(zhì),可得答案【解答】解: =3(b+d+f0),則=3,故答案為:3【點(diǎn)評】本題考查了比例的性質(zhì),利用等比性質(zhì)是解題關(guān)鍵14已知關(guān)于x的方程x2+3x+a=0有一個根為2,則另一個根為1【考點(diǎn)】根與系數(shù)的關(guān)系【分析】設(shè)方程的兩個根為a、b,由根與系數(shù)的關(guān)系找出a+b=3,代入a=2即可得出b值【解答】解:設(shè)方程的兩個根為a、b,a+b=3,方程的一根a=2,b=1故答案為:1【點(diǎn)評】本題考查了跟與系數(shù)的關(guān)系,根據(jù)方程的系數(shù)找出a+b=3時解題的關(guān)鍵15已知三角形兩邊的長是6和8,第三邊的長是方程x216x+60=0的一個根,則該三角形的面積是

21、24或【考點(diǎn)】解一元二次方程-因式分解法;三角形的面積;三角形三邊關(guān)系【專題】分類討論【分析】先解出方程x216x+60=0的根;再結(jié)合三角形的三邊關(guān)系判斷是否能構(gòu)成三角形及是否為特殊三角形等;最后計算三角形的面積【解答】解:x216x+60=0,(x10)(x6)=0,x=6或10,三角形兩邊的長是6和8,86第三邊6+82第三邊14第三邊的長為6或10三角形有兩種:當(dāng)三邊為6、6、8時,三角形為等腰三角形,面積=8,當(dāng)三邊為6、8、10時,三角形為直角三角形,面積=24【點(diǎn)評】本題是綜合題,涉及知識點(diǎn)較多包括方程、三角形等,而且答案不唯一易錯點(diǎn)是漏解16如圖,已知正方形ABCD的邊長為4,

22、點(diǎn)E、F分別在邊AB,BC上,且AE=BF=1,則OC=【考點(diǎn)】全等三角形的判定與性質(zhì);正方形的性質(zhì);相似三角形的判定與性質(zhì)【分析】首先證明BECCFD,即可證明OCDF,然后利用直角三角新的面積公式即可求得OC的長【解答】解:正方形ABCD中,AB=BC=CD=4,B=DCF,又AE=BF,BE=CF=41=3,DF=5,則在直角BEC和直角CFD中,BECCFD,BEC=CFD,又直角BCE中,BEC+BCE=90°,CFD+BCE=90°,F(xiàn)OC=90°,即OCDF,SCDF=CDCF=OCDF,OC=故答案是:【點(diǎn)評】本題考查了正方形的性質(zhì),以及全等三角形

23、的判定與性質(zhì),證明BECCFD是解題的關(guān)鍵三、解答題(本大題有7題,共52分)17用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?)x2+6x7=0 (2)2x2+4x3=0【考點(diǎn)】解一元二次方程-因式分解法【分析】(1)直接利用十字相乘法分解因式進(jìn)而得出答案;(2)直接利用公式法解方程得出答案【解答】解:(1)x2+6x7=0 (x1)(x+7)=0,解得:x1=1,x2=7;(2)2x2+4x3=0b24ac=16+24=400,則x=,解得:x1=,x2=【點(diǎn)評】此題主要考查了一元二次方程的解法,靈活應(yīng)用各種解題方法是解題關(guān)鍵18如圖,已知菱形ABCD中,對角線AC、BD相交于點(diǎn)O,過點(diǎn)C作CEBD,過點(diǎn)D作

24、DEAC,CE與DE相交于點(diǎn)E(1)求證:四邊形CODE是矩形;(2)若AB=5,AC=6,求四邊形CODE的周長【考點(diǎn)】菱形的性質(zhì);矩形的判定【分析】(1)如圖,首先證明COD=90°;然后證明OCE=ODE=90°,即可解決問題(2)如圖,首先證明CO=AO=3,AOB=90°;運(yùn)用勾股定理求出BO,即可解決問題【解答】解:(1)如圖,四邊形ABCD為菱形,COD=90°;而CEBD,DEAC,OCE=ODE=90°,四邊形CODE是矩形(2)四邊形ABCD為菱形,AO=OC=AC=3,OD=OB,AOB=90°,由勾股定理得:B

25、O2=AB2AO2,而AB=5,DO=BO=4,四邊形CODE的周長=2(3+4)=14【點(diǎn)評】該題主要考查了菱形的性質(zhì)、矩形的性質(zhì)、勾股定理等幾何知識點(diǎn)及其應(yīng)用問題;解題的關(guān)鍵是牢固掌握菱形的性質(zhì)、矩形的性質(zhì),這是靈活運(yùn)用解題的基礎(chǔ)和關(guān)鍵19已知:如圖,在ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),ADE=C(1)求證:BDECAD;(2)若CD=2,求BE的長【考點(diǎn)】相似三角形的判定與性質(zhì)【專題】計算題;證明題【分析】(1)由題中條件可得B=C,所以由已知條件,求證BDE=CAD即可;(2)由(1)可得BDECAD,進(jìn)而由相似三角形的對應(yīng)邊成比例,即可求解線段的長【

26、解答】(1)證明:AB=AC,B=CADE+BDE=ADB=C+CAD,ADE=C,BDE=CADBDECAD(2)解:由(1)得AB=AC=5,BC=8,CD=2,DB=BCCD=6【點(diǎn)評】本題主要考查了相似三角形的判定及性質(zhì)問題,能夠掌握并熟練運(yùn)用20某超市經(jīng)銷一種成本為40元/kg的水產(chǎn)品,市場調(diào)查發(fā)現(xiàn),按50元/kg銷售,一個月能售出500kg經(jīng)市場調(diào)查,銷售單價每漲1元,月銷售量就減少10kg,針對這種水產(chǎn)品的銷售情況,超市在月成本不超過10000元的情況下,使得月銷售利潤達(dá)到8000元,請你幫忙算算,銷售單價定為多少?【考點(diǎn)】一元二次方程的應(yīng)用【專題】銷售問題【分析】先根據(jù)銷售利潤

27、=每件利潤×數(shù)量,再設(shè)出單價應(yīng)定為x元,再根據(jù)這個等式列出方程,即可求出答案【解答】解:設(shè)銷售單價定為x元,根據(jù)題意得:(x40)500(x50)×10=8000解得:x1=60(舍去),x2=80,所以x=80答:銷售單價定為80元【點(diǎn)評】此題考查了一元二次方程的應(yīng)用,根據(jù)銷售利潤=每件利潤×數(shù)量這個等式列出方程是解決本題的關(guān)鍵21如圖,有長為22米的籬笆,一面利用墻(墻的最大可用長度為14米),圍成中間隔有一道籬笆的長方形花圃,為了方便出入,在建造籬笆花圃時,在BC上用其他材料造了寬為1米的兩個小門(1)設(shè)花圃的寬AB為x米,請你用含x的代數(shù)式表示BC的長(2

28、43x)米;(2)若此時花圃的面積剛好為45m2,求此時花圃的寬【考點(diǎn)】一元二次方程的應(yīng)用【專題】幾何圖形問題【分析】(1)設(shè)花圃的寬AB為x米,由矩形面積S=長×寬,列出函數(shù)解析式即可;(2)由在BC上用其他材料造了寬為1米的兩個小門,故長變?yōu)?23x+2,令面積為45,解得x【解答】解:(1)BC=22+23x=243x故答案為(243x);(2)x(243x)=45,化簡得:x28x+15=0,解得:x1=5,x2=3當(dāng)x=5時,243x=914,符合要求;當(dāng)x=3時,243x=1514,不符合要求,舍去答:花圃的寬為5米【點(diǎn)評】本題主要考查二次函數(shù)及一元二次方程的應(yīng)用,解題的

29、關(guān)鍵是從實(shí)際問題中整理出二次函數(shù)模型并運(yùn)用二次函數(shù)解決實(shí)際問題,比較簡單22如圖,ABC中,C=90°,AC=3cm,BC=4cm,動點(diǎn)P從點(diǎn)B出發(fā)以2cm/s速度向點(diǎn)c移動,同時動點(diǎn)Q從C出發(fā)以1cm/s的速度向點(diǎn)A移動,設(shè)它們的運(yùn)動時間為t(1)根據(jù)題意知:CQ=t,CP=42t;(用含t的代數(shù)式表示)(2)t為何值時,CPQ的面積等于ABC面積的?(3)運(yùn)動幾秒時,CPQ與CBA相似?【考點(diǎn)】一元二次方程的應(yīng)用;相似三角形的判定【專題】幾何動點(diǎn)問題【分析】(1)結(jié)合題意,直接得出答案即可;(2)根據(jù)三角形的面積列方程即可求出結(jié)果;(2)設(shè)經(jīng)過t秒后兩三角形相似,則可分下列兩種情況進(jìn)行求解:若RtABCRtQPC,若RtABCRtPQC,然后列方程求解【解答】解:(1)經(jīng)過t秒后,PC=42t,CQ=t,(2)當(dāng)CPQ的面積等于ABC面積的時,即(42t)t=××3×4,解得;t=或t=;答:經(jīng)過或秒后,CPQ的面積等于ABC面積的;(3)設(shè)經(jīng)過t秒后兩三角形相似,則可分下列兩種情況進(jìn)行求解,若RtABCRtQPC則=,即=,解得t=1.2;若RtABCRtPQC則=,即=,解得t=;由P點(diǎn)在BC邊上的運(yùn)動速度為2cm/s,Q點(diǎn)在AC邊上的速度為1cm/s,可求出t的取值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論