




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、.高中數(shù)學必修四高中數(shù)學必修四第一章.復習 判斷下列三角函數(shù)的符號 Sin(-30) Cos(-30) Tan(-30).回顧 Sin (+) Cos (+)Tan (+) Sin (+) Cos (-)Tan (-) Sin (-) Cos (-)Tan (+) Sin (-) Cos (+)Tan (-).“特殊角”的三角函數(shù)1in=62S3in=32S2in=42Sin=12S.三角函數(shù)之間的關系-(-a,b)(a,b)22bSin =ab22bSin( - )=(-a)bSin( - )=Sin.正弦SinSin()Sin( ) 證明證明: :.余弦Cos和Cos( - )=-Cos-
2、(-a,b)(a,b)22-aCos( - )=(-a)b22aCos =ab.余弦Cos證明證明: :Cos()Cos( ) .Sin和Cos22Sin+Cos=1Sin =Cos2(- ).正切tan和-(-a,b)(a,b)bTan( - )=-abTan =aTan( - )=-Tan.Tan和Sin、CosSinTanCos Cos( - )=-CosSin( - )=SinSinTan-=-TanCos ()Sin-Tan-Cos- ()()().Sin和2的關系Sin(2 - )=-SinSin(2 + )=Sin.Sin和/2的關系Sin(- )=Cos2Sin(+ )=Cos
3、2.Cos和2的關系Cos(2 + )=CosCos(2 - )=Cos.Cos和/2的關系Cos(- )=Sin2Cos(+ )=-Sin2.練習題 Sin(2/3) Sin(11/6) Sin(/3) Cos(2/3) Cos(11/6) Cos(/3).Tan和2的關系Tan(2 + )=TanTan(2 - )=-Tan.Tan和/2的關系Tan(- )=Cot2Tan(+ )=-Cot2.兩角的三角函數(shù)的關系Sin=Sin Cos +Cos Sin ( + )試證明:試證明:Sin+= os2()C已已 知:知:Sin12Cos02.兩角的三角函數(shù)的關系Sin=Sin CosCos
4、Sin ( - )試證明:試證明:Sin=- os2() C已已 知:知:Sin12Cos02.兩角的三角函數(shù)的關系Cos=Cos CosSin Sin ( + )試證明:試證明:Cos=- Cos()已已 知:知:Sin0Cos1 .兩角的三角函數(shù)的關系Cos=Cos CosSin Sin ( - )試證明:試證明:Cos=Sin2()已已 知:知:Sin12Cos02.兩角的三角函數(shù)的關系SinTan=CosSin CosSin CosTanTan =Cos CosSin Sin1 Tan Tan ()( + )( + ).兩角的三角函數(shù)的關系SinTan=CosSin CosSin Co
5、sTanTan =Cos CosSin Sin1Tan Tan ()( - )( - ).二倍角公式sin22sincosSin2Sin().二倍角公式222CosCosSin222cos11 2sin .二倍角公式2221TanTanTan.三角函數(shù)的圖像?1?-1?y=sinx?-3?2?-5?2?-7?2?7?2?5?2?3?2?2?-?2?-4?-3?-2?4?3?2?-?o?y?x.Sin圖像?1?-1?y=sinx?-3?2?-5?2?-7?2?7?2?5?2?3?2?2?-?2?-2?4?3?2?-?o?y?x.?1?-1?y=cosx?-3?2?-5?2?-7?2?7?2?5?
6、2?3?2?2?-?2?-4?-3?-2?4?3?2?-?o?y?xCos圖像.Cos圖像?1?-1?y=cosx?-3?2?-5?2?-7?2?7?2?5?2?3?2?2?-?2?-3?-2?4?3?2?-?o?y?x.Tan圖像?y=tanx?3?2?2?-?3?2?-?-?2?o?y?x.三角函數(shù)圖像的移動sin()yAx2sin(2)例如:yx.sin()yAx左右移動左右移動橫向縮放橫向縮放縱向縮放縱向縮放.周期函數(shù) 將f(x)=f(x+T)這樣的函數(shù),我們稱之為周期函數(shù)。 對于三角函數(shù)來說sin?x=sin(x+2k),因此事周期函數(shù)。.周期 對于周期函數(shù)來說f(x+T)=f(x)
7、,其中T稱之為周期函數(shù)f(x)的周期。 其中最小的T稱為,最小周期。.求下列函數(shù)的周期y=3sinxxR,y=sin2xxR,.三角函數(shù)的周期y=sinx2的周期是2y=Asinx+()的周期是.三角函數(shù)的奇偶性y=sinx是奇函數(shù)y=cos x是偶函數(shù).函數(shù)的奇偶性 函數(shù)的奇、偶性是根據函數(shù)f(x)和f(-x)來判斷的。 如果f(-x)=-f(x)則函數(shù)是奇函數(shù) 如果f(-x)=f(x)則函數(shù)是偶函數(shù) 如果不是上述二者,那么函數(shù)式非奇非偶函數(shù)。.函數(shù)遞增區(qū)間圖像?y=tanx?3?2?2?-?3?2?-?-?2?o?y?x.函數(shù)遞增區(qū)間圖像?y=tanx?3?2?2?-?3?2?-?-?2?
8、o?y?xy=tanxk -k +k22對于函數(shù)在(,)單調遞增,其中 屬于整數(shù)。.函數(shù)單調區(qū)間?1?-1?y=sinx?-3?2?-5?2?-7?2?7?2?5?2?3?2?2?-?2?-4?-3?-2?4?3?2?-?o?y?xy=sinxk -kk22對于,函數(shù)在(2,2+)單調遞增,其中 屬于整數(shù)。3y=sinxk +kk22對于,函數(shù)在(2,2+)單調遞減,其中 屬于整數(shù)。.函數(shù)單調區(qū)間?1?-1?y=cosx?-3?2?-5?2?-7?2?7?2?5?2?3?2?2?-?2?-4?-3?-2?4?3?2?-?o?y?xy=cosxkkk 對于,函數(shù)在(2,2+ )單調遞減,其中 屬于整數(shù)。y=cosxkkk對于,函數(shù)在(2,2+2 )單調遞增,其中 屬于整數(shù)。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- lol歷史考試題及答案
- java程序員面試題及答案問題
- 軟件設計師考試如何運用情境模擬進行提升試題及答案
- 軟件設計師考試參與方式探討試題及答案
- 政治文化對公共政策的影響試題及答案
- 軟考網絡知識體系構建試題及答案
- 數(shù)字信號處理在網絡中的應用試題及答案
- 機電工程2025年綜合分析能力試題及答案
- 項目管理中的應急預案制定與實施試題及答案
- 如何通過政策研究推動社會發(fā)展試題及答案
- 2025年中國百合行業(yè)發(fā)展運行現(xiàn)狀及投資戰(zhàn)略規(guī)劃報告
- 日間手術流程規(guī)范
- 公司節(jié)能診斷報告
- 2024年09月2024秋季中國工商銀行湖南分行校園招聘620人筆試歷年參考題庫附帶答案詳解
- 《冬病夏治》課件
- 《水滸傳》閱讀計劃
- 相控陣培訓課件
- 《攀巖基礎常識》課件
- 《金屬非金屬露天礦山及尾礦庫重大事故隱患判定標準解讀》知識培訓
- 數(shù)字人力資源管理 課件 02第二章 數(shù)字化時代人力資源管理思維
- 供應商品質改善及計劃
評論
0/150
提交評論