九下數(shù)學(xué)第二十六章小結(jié)與復(fù)習(xí)ppt課件_第1頁(yè)
九下數(shù)學(xué)第二十六章小結(jié)與復(fù)習(xí)ppt課件_第2頁(yè)
九下數(shù)學(xué)第二十六章小結(jié)與復(fù)習(xí)ppt課件_第3頁(yè)
九下數(shù)學(xué)第二十六章小結(jié)與復(fù)習(xí)ppt課件_第4頁(yè)
九下數(shù)學(xué)第二十六章小結(jié)與復(fù)習(xí)ppt課件_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、小結(jié)與復(fù)習(xí)第二十六章 反比例函數(shù) 優(yōu)優(yōu) 翼翼 課課 件件 要點(diǎn)梳理考點(diǎn)講練課堂小結(jié)課后作業(yè) 九年級(jí)數(shù)學(xué)下(RJ) 教學(xué)課件1. 反比例函數(shù)的概念要點(diǎn)梳理要點(diǎn)梳理定義:形如_ (k為常數(shù),k0) 的函數(shù)稱為反比例函數(shù),其中x是自變量,y是x的函數(shù),k是比例系數(shù)三種表達(dá)式方法: 或 xykx 或ykx1 (k0)防錯(cuò)提醒:(1)k0;(2)自變量x0;(3)函數(shù)y0.kyxkyx2. 反比例函數(shù)的圖象和性質(zhì) (1) 反比例函數(shù)的圖象:反比例函數(shù) (k0)的 圖象是 ,它既是軸對(duì)稱圖形又是中心 對(duì)稱圖形. 反比例函數(shù)的兩條對(duì)稱軸為直線 和 ; 對(duì)稱中心是: .雙曲線原點(diǎn)kyxy = xy=x(2)

2、反比例函數(shù)的性質(zhì) 圖象所在象限性質(zhì)(k0)k0一、三象限(x,y同號(hào))在每個(gè)象限內(nèi),y 隨 x 的增大而減小k0二、四象限(x,y異號(hào))在每個(gè)象限內(nèi),y 隨 x 的增大而增大kyxxyoxyo(3) 反比例函數(shù)比例系數(shù) k 的幾何意義 k 的幾何意義:反比例函數(shù)圖象上的點(diǎn) (x,y) 具有兩坐標(biāo)之積 (xyk) 為常數(shù)這一特點(diǎn),即過雙曲線上任意一點(diǎn),向兩坐標(biāo)軸作垂線,兩條垂線與坐標(biāo)軸所圍成的矩形的面積為常數(shù) |k|.規(guī)律:過雙曲線上任意一點(diǎn),向兩坐標(biāo)軸作垂線,一條垂線與坐標(biāo)軸、原點(diǎn)所圍成的三角形的面積為常數(shù) 2k3. 反比例函數(shù)的應(yīng)用 利用待定系數(shù)法確定反比例函數(shù): 根據(jù)兩變量之間的反比例關(guān)系

3、,設(shè) ; 代入圖象上一個(gè)點(diǎn)的坐標(biāo),即 x、y 的一對(duì) 對(duì)應(yīng)值,求出 k 的值; 寫出解析式.kyx 反比例函數(shù)與一次函數(shù)的圖象的交點(diǎn)的求法求直線 yk1xb (k10) 和雙曲線 (k20)的交點(diǎn)坐標(biāo)就是解這兩個(gè)函數(shù)解析式組成的方程組.2kyx 利用反比例函數(shù)相關(guān)知識(shí)解決實(shí)際問題過程:分析實(shí)際情境建立函數(shù)模型明確 數(shù)學(xué)問題注意:實(shí)際問題中的兩個(gè)變量往往都只能取 非負(fù)值.考點(diǎn)講練考點(diǎn)講練考點(diǎn)一 反比例函數(shù)的概念針對(duì)訓(xùn)練1. 下列函數(shù)中哪些是正比例函數(shù)?哪些是反比例函數(shù)? y = 3x1 y = 2x2 y = 3x1yx23xy 1yx 13yx32yxkyx13132. 已知點(diǎn) P(1,3)

4、在反比例函數(shù) 的圖象上, 則 k 的值是 ( ) A. 3B. 3 C. D. B3. 若 是反比例函數(shù),則 a 的值為 ( ) A. 1 B. 1 C. 1 D. 任意實(shí)數(shù)221ayaxA例1 已知點(diǎn) A(1,y1),B(2,y2),C(3,y3) 都在反比例函數(shù) 的圖象上,則y1,y2,y3的大小關(guān)系是 ( )A. y3y1y2 B. y1y2y3C. y2y1y3 D. y3y2y1解析:方法分別把各點(diǎn)代入反比例函數(shù)求出y1,y2,y3的值,再比較出其大小即可方法:根據(jù)反比例函數(shù)的圖象和性質(zhì)比較考點(diǎn)二 反比例函數(shù)的圖象和性質(zhì)D 6yx方法總結(jié):比較反比例函數(shù)值的大小,在同一個(gè)象限內(nèi)根據(jù)反

5、比例函數(shù)的性質(zhì)比較,在不同象限內(nèi),不能按其性質(zhì)比較,函數(shù)值的大小只能根據(jù)特征確定y1 0y2針對(duì)訓(xùn)練 已知點(diǎn) A (x1,y1),B (x2,y2) (x10 x2)都在反比例函數(shù) (k 2 時(shí),y 與 x 的函數(shù)解析式;解:當(dāng) x 2時(shí),y 與 x 成反比例函數(shù)關(guān)系, 設(shè).kyx解得 k 8.由于點(diǎn) (2,4) 在反比例函數(shù)的圖象上,所以42k,即8.yxOy/毫克x/小時(shí)24(3) 若每毫升血液中的含藥量不低于 2 毫克時(shí)治療有 效,則服藥一次,治療疾病的有效時(shí)間是多長(zhǎng)?解:當(dāng) 0 x2 時(shí),含藥量不低于 2 毫克,即 2x2, 解得x1,1x2; 當(dāng) x2 時(shí),含藥量不低于 2 毫克,即

6、 2,解得 x 4. 2 x 4.8x所以服藥一次,治療疾病的有效時(shí)間是 123 (小時(shí))Oy/毫克x/小時(shí)24 如圖所示,制作某種食品的同時(shí)需將原材料加熱,設(shè)該材料溫度為y,從加熱開始計(jì)算的時(shí)間為x分鐘據(jù)了解,該材料在加熱過程中溫度y與時(shí)間x成一次函數(shù)關(guān)系已知該材料在加熱前的溫度為4,加熱一段時(shí)間使材料溫度達(dá)到28時(shí)停止加熱,停止加熱后,材料溫度逐漸下降,這時(shí)溫度y與時(shí)間 x 成反比例函數(shù)關(guān)系,已知第 12 分鐘時(shí),材料溫度是14針對(duì)訓(xùn)練Oy()x(min)1241428(1) 分別求出該材料加熱和停止加熱過程中 y 與 x 的函 數(shù)關(guān)系式(寫出x的取值范圍);Oy()x(min)1241428答案:y = 168x4x + 4 (0 x 6), (x6). (2) 根據(jù)該食品制作要求,在材料溫度不低于 12 的 這段時(shí)間內(nèi),需要對(duì)該材料進(jìn)行特殊處理,那么 對(duì)該材料進(jìn)行特殊處理的時(shí)間為多少分鐘?解:當(dāng)y =12時(shí),y =4x+4,解得 x=2 由 ,解得x =14. 所以對(duì)該材料進(jìn)行特殊 處理所用的時(shí)間為 142=12 (分鐘)168yxOy()x(min)1241428課堂小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論