




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、Deep Learning For FaceXuejin ChenFace Recognition Timeline889092949698100102Face Recognition AccuracyDeepIDCVPR1497.45DeepFaceCVPR1497.25TL Joint BayesianICCV1396.33high-dim LBPCVPR1395.1792.42Joint BayesianECCV12ConvNet-RBMICCV1392.5292.5893.03CMD+SLBPTR11Fisher vector facesBMVC1393.30Tom-vs-PeteBM
2、VC12human97.5399.6599.6099.53DeepID3arXiv 15Tencent2014FaceNetCVPR 2015Face Recognition Rate Deep Learning Face Representation from Predicting 10,000 Classes, CVPR 14 Yi Sun DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 14 Deep Learning Face Representation from Pred
3、icting 10,000 Classes Yi Sun, Xiaogang Wang, Xiaoou Tang, CUHK, CVPR 14 Deep hidden IDentity features (DeepID) High-level feature representation Can be generalized into other tasks Feature: the last hidden layer Weekly aligned faces Deep Learning Face Representation from Predicting 10,000 Classesk =
4、 3 for color patches k = 1 for gray patchesDeep Learning Face Representation from Predicting 10,000 Classes Convolutional layer Max-pooling layer Number of feature mapsKernel size ReLU nonlinearityDeep Learning Face Representation from Predicting 10,000 ClassesDeep Learning Face Representation from
5、Predicting 10,000 Classes The last hidden layer of DeepID is fully connected toboth the third and fourth convolutional layers (after max-pooling) It sees multi-scale features, features in the fourth convolutional layer are more global than those in the third one The fourth convolutional layer contai
6、ns too few neurons and becomes the bottleneck for information propagationDeep Learning Face Representation from Predicting 10,000 ClassesDeep Learning Face Representation from Predicting 10,000 Classes Feature Extraction Five facial landmarks Globally aligned by similarity transformation Extract 60
7、patches: 10 regions, 3 scales, rgb+gray Train 60 ConvNets, each one extract two 160-D features (horizontally flipped) The total length of DeepID is 19200 (160 x2x60) for the final face verificationDeepFaceCVPR 2014DeepFace: Face Alignment with an 3D model(a) The detected face(b) 2D-aligned crop (a)
8、Mesh with 67 fiducial points(b) Reference 3D template(e) Triangle visibility(f) Piecewise affine warpping (g) The frontalized crop(h) A new viewDeepFace: Learning Representation DeepFace: Learning Representation Convolution layers to extract low-level featuresDeepFace: Learning Representation Locall
9、y Connected Layers Different regions of an aligned image have different local statisticsDeepFace: Learning Representation Fully Connected Layers Correlations between features captured in distant parts The output of the last fully-connected layer is fed to a K-way softmaxDeepFace: Learning Representa
10、tion The features produced by this network are very sparse (75% of the feature components in the topmost layers are exactly zero). ReLU activation function Drop in F7DeepFace: Learning Representation Fully Connected Layers DatasetsSocial Face Classification (SFC) 4.4 million labeled faces 4,030 peop
11、le Each has 8001200 faces The LFW dataset 13,323 web photos 5,749 celebrities 6,000 face pairs in 10 splits.Results on SFC The capacity of the network can well accommodate the scale of 3M training image, and the network scales comfortably to more persons. Lower error could be obtained by More traini
12、ng data Deeper networkTable 1. Comparison of the classification errors on the SFC w.r.t.training dataset size and network depthResults on the LFW datasetDeepFace-single: 3d aligned, rgb inputDeepFace-align2D: 2D-aligned RGB imagesDeepFace-gradient: gray + gradient magnitude & orientationDeepFace
13、-Siamese: learn a verification metric by fine-tuning the Siameses (shared) pre-trained feature extractorDeepFace-Ensemble: all four networks togetherOverall, the DeepFace runs at 0.33 seconds per imageaccounting for image decoding, face detection and alignment, the feedforward network, and the final
14、 classification output.FaceNet CVPR 2015FaceNet Directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity Representational efficiency: State-of-the-art face recognition performance using only 128-bytes per faceFaceNet:
15、 Model Architecture End-to-end learning of the whole system FaceNet: Triplet lossHow to select triplets?Fast convergence Contribute to training FaceNet: Triplet Selection Two options Generate triplets offline every n steps using the most recent network checkpoint and computing the argmin and argmax
16、on a subset of the data. Generate triplets online This can be done by selecting the hard positive/negative exemplars from within a mini-batch.FaceNet: Triplet Selection Generate triplets online Use large mini-batches a minimal number of exemplars of any one identity is present in each mini-batch 40 per identify, use all anchor-positive pairs Randomly sample negative faces to the mini-batch Select semi-hard exampl
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玻璃吊橋led施工方案
- 弧形閘門專項施工方案
- 燃氣工程改造施工方案
- 斜井隧道施工方案
- 水庫鉆孔注漿施工方案
- 涵洞水管架空施工方案
- 承接彩燈施工方案
- 小麥島內(nèi)部施工方案
- 電梯梯井施工方案
- 橡膠地面景觀施工方案
- 中國舞蹈家協(xié)會《中國舞蹈考級》 第四版教材
- 田野考古學(xué)理論:地層學(xué)與類型學(xué)課件
- DB51∕T 2839-2021 軍休干部(士官)服務(wù)管理規(guī)范
- 一年級下冊衛(wèi)生與保健教學(xué)計劃及教案
- 機械制圖習(xí)題集_附帶答案(270張幻燈片)
- 設(shè)計報告001模擬通信系統(tǒng)的SIMULINK建模仿真
- 三年級數(shù)學(xué)下冊單元計劃【9個單元全】
- 沉降觀測常用表格
- 鋼筋工程隱蔽檢查驗收記錄填寫實例
- 鐵路混凝土梁配件多元合金共滲防腐技術(shù)條件
- 建設(shè)工程規(guī)劃放線、驗線申請表
評論
0/150
提交評論