80211n信道模型matlab代碼_第1頁(yè)
80211n信道模型matlab代碼_第2頁(yè)
80211n信道模型matlab代碼_第3頁(yè)
80211n信道模型matlab代碼_第4頁(yè)
80211n信道模型matlab代碼_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、function R, Q, sigma_deg = correlation(M, spacing, d_norm, . cluster_number, amplitude_cluster, . PAS_type, phi_deg, AS_deg, . delta_phi_deg, type)% R, Q, sigma_deg = correlation(M, spacing, d_norm,% cluster_number, amplitude_cluster, PAS_type,% phi_deg, AS_deg, delta_phi_deg, type)% Derives the cor

2、relation matrix R from the description of the% environment, namely the antenna element spacing and the way the% waves impinge (number of clusters, PAS type, AS and mean angle of% incidence). The generated correlation coefficients are either% (complex) field correlation coefficients (type = 0) or (re

3、al% positive) power correlation coefficients (type = 1).% Inputs% * Variable M, number of antenna elements of the ULA% * Variable spacing, spacing of the antenna elements of the ULA% * Vector d_norm, containing the relative spacings of the M% elements of the ULA with respect to the first one% * Vari

4、able cluster_number, number of impinging clusters% * Vector amplitude_cluster, containing the amplitude of% the cluster_number impinging clusters% * Variable PAS_type, defines the nature of the PAS, isotropic% uniform (1), isotropic Gaussian (2), isotropic Laplacian (3)% or directive Laplacian (6) a

5、ccording to 3GPP-3GPP2 SCM AHG% radiation pattern% * Vector phi_deg, containing the AoAs of the number_cluster% clusters% * Vector AS_deg, containing the ASs of the number_cluster% clusters% * Vector delta_phi_deg, containing the constraints limits% of the truncated PAS, if applicable (Gaussian and

6、Laplacian% case)% * Variable type, defines whether correlation properties% should be computed in field (0) or in power (1)% Outputs% * 2-D Hermitian matrix R of size M x M, whose elements are% the correlation coefficients of the corresponding elements% of the ULA impinged by the described PAS %Vecto

7、r Q of cluster_number elements, giving the normalisation% coefficients to be applied to the clusters in order to have% the PAS fulfilling the definition of a pdf% * Vector sigma_deg of cluster_number of elements, giving% the standard deviations of the clusters, derived from% their description. There

8、 is not necessarily equality between% the given AS and the standard deviation of the modelling PAS.% Revision history% April 2003 - Addition of case 6 (directive Laplacian)% February 2002 - Creation% STANDARD DISCLAIMER% CSys is furnishing this item "as is". CSys does not provideany% warra

9、nty of the item whatsoever, whether express, implied, or% statutory, including, but not limited to, any warranty of% merchantability or fitness for a particular purpose or any% warranty that the contents of the item will be error-free.% In no respect shall CSys incur any liability for any damages,%

10、including, but limited to, direct, indirect, special, or% consequential damages arising out of, resulting from, or any way% connected to the use of the item, whether or not based upon% warranty, contract, tort, or otherwise; whether or not injury was% sustained by persons or property or otherwise; a

11、nd whether or not% loss was sustained from, or arose out of, the results of, %the item, or any services that may be provided by CSys.% (c) Laurent Schumacher, AAU-TKN/IES/KOM/CPK/CSys - February 2002% Normalisationswitch(PAS_type) case 1 % Uniform distribution Q = normalisation_uniform(cluster_numbe

12、r, . amplitude_cluster, . AS_deg); sigma_deg = -1; % meaningless in uniform PAS case 2 % Gaussian distribution Q, sigma_deg = . normalisation_gaussian(cluster_number, . amplitude_cluster, . AS_deg, . delta_phi_deg); case 3, 6 % Laplacian distribution Q, sigma_deg = . normalisation_laplacian(cluster_

13、number, . amplitude_cluster, . AS_deg, . delta_phi_deg); otherwise disp('PAS type non supported. Exiting.'); return %ÎÒ°Ñbreak¸ÄÁËend if (M>1) % Complex correlation computation switch(PAS_type) case 1 % Isotropic Uniform distribution Rxx = bessel(0,

14、2.*pi.*d_norm); Rxy = zeros(size(Rxx); for k=1:cluster_number Rxx = Rxx + Q(k).*Rxx_uniform(d_norm, . phi_deg(k), . AS_deg(k); Rxy = Rxy + Q(k).*Rxy_uniform(d_norm, . phi_deg(k), . AS_deg(k); end; case 2 % Isotropic Gaussian distribution Rxx = bessel(0,2.*pi.*d_norm); Rxy = zeros(size(Rxx); for k=1:

15、cluster_number Rxx = Rxx + Q(k).*Rxx_gaussian(d_norm, . phi_deg(k), . sigma_deg(k), . delta_phi_deg(k); Rxy = Rxy + Q(k).*Rxy_gaussian(d_norm, . phi_deg(k), . sigma_deg(k), . delta_phi_deg(k); end; case 3 % Isotropic Laplacian distribution Rxx = bessel(0,2.*pi.*d_norm); Rxy = zeros(size(Rxx); for k=

16、1:cluster_number Rxx = Rxx + Q(k).*Rxx_laplacian(d_norm, . phi_deg(k), . sigma_deg(k), . delta_phi_deg(k); Rxy = Rxy + Q(k).*Rxy_laplacian(d_norm, . phi_deg(k), . sigma_deg(k), . delta_phi_deg(k); end; case 6 % Directive Laplacian distribution % Hard-coded radiation pattern characteristics tmp = rho

17、_lpl_SCM_AHG_approx(d_norm, . phi_deg, . Q, . sigma_deg, . delta_phi_deg, . 12, 20, 70); Rxx = real(tmp); Rxy = imag(tmp); end; % Correlation coefficient computation if (type = 0) tmp = Rxx + i.* Rxy; else tmp = Rxx.2 + Rxy.2; end; R = toeplitz(tmp);else R = 1;endfunction E=erfcomp(z); % ERFCOMP (ko

18、mplexes) Fehlerintegral % % E=ERFCOMP(Z) % % Die (komplexe) Matrix Z ist das Eingabeargument % für diese Prozedur. Zurückgeliefert wird die % komplexe Error-Funktion. % % Entnommen aus Abramowitz, % Abschnitt "Error Functions and Fresnel Integrals", % Seite 299 zx,sx=size(z); % D

19、imension der Eingabematrix x=real(z); y=imag(z); x=x(:); y=y(:); i=sqrt(-1); % E=erf(x); KOa=+0.3275911; % Hier erfolgt die Berechnung der KOA=+0.254829592; % Error-Funktion durch eine rationale KOB=-0.284496736; % Approximation für reelle Argumente. KOC=+1.421413741; KOD=-1.453152027; KOE=+1.0

20、61405429; w=1 ./(1 + KOa .*abs(x); P=KOE .*w + KOD; P=P .*w + KOC; P=P .*w + KOB; P=P .*w + KOA; P=P .*w; Q=exp(-(x .*x); E=(1 - Q .*P) .*sign(x); S=zeros(size(E); abserr=100; n=1; while abserr>1E-12, fn=2 .*x - 2 .*x .*cosh(n .*y) .*cos(2 .*x .*y) + n .*sinh(n .*y) .*sin(2 .*x .*y); gn=2 .*x .*c

21、osh(n .*y) .*sin(2 .*x .*y) + n .*sinh(n .*y) .*cos(2 .*x .*y); fgn=(fn + i .*gn) .*exp(-0.25 .*(n .2) ./( (n .2) + (4 .*(x .2); Sakt=2 .*fgn .*exp(-(x .2) ./pi; abserr=max(abs(Sakt); n=n+1; S=S + Sakt; end ki=find(x=0 & y=0); if isempty(ki), E(ki)=zeros(size(ki); end ki=find(x=0 & y=0); if

22、isempty(ki), E(ki)=i .*y(ki) ./pi; end ki=find(x=0 & y=0); if isempty(ki), xk=x(ki); yk=y(ki); E(ki)=erf(xk) + (exp(-(xk .2) .*( (1 - cos(2 .*xk .*yk) + i .*sin(2 .*xk .*yk) ./(2 .*pi .*xk); end E=E+S; E=reshape(E,zx,sx);geometry2correlation% User interface to the definition of the correlation m

23、atrices% of the MIMO radio channel model. For both Node B and UE,% the user is prompted for% * the number of elements% * the spacing between elements (Uniform Linear Array is assumed)% * the number of impinging clusters of waves% * their Power Azimuth Spectrum (PAS) type (Uniform, Gaussian or Laplac

24、ian)% * the mean angle of incidence (in degrees)% * the Azimuth Spread (AS)% STANDARD DISCLAIMER% CSys is furnishing this item "as is". CSys does not provide any% warranty of the item whatsoever, whether express, implied, or% statutory, including, but not limited to, any warranty of% merch

25、antability or fitness for a particular purpose or any% warranty that the contents of the item will be error-free.% In no respect shall CSys incur any liability for any damages,% including, but limited to, direct, indirect, special, or% consequential damages arising out of, resulting from, or any way

26、% connected to the use of the item, whether or not based upon% warranty, contract, tort, or otherwise; whether or not injury was% sustained by persons or property or otherwise; and whether or not% loss was sustained from, or arose out of, the results of, the% item, or any services that may be provid

27、ed by CSys.% (c) Laurent Schumacher, AAU/TKN/I8/KOM/CPK/CSys - September 2001 clear;clf;display = 1; % Interactive dialog% % Downlink or uplink string = sprintf('n');disp(string);Downlink = -1;while (Downlink = 0) & (Downlink =1) Downlink = input('Downlink (Yes = 1, no = 0)? ');e

28、nd; % Field or envelope/power string = sprintf('n');disp(string);Field = -1;while (Field = 0) & (Field =1) Field = input('Type of correlation coefficient (Field = 0, Envelope = 1)? ');end; % Configuration of Node B string = sprintf('n* Node B *n');M, spacing_Node_B, d_nor

29、m_Node_B, cluster_number_Node_B, . amplitude_cluster_Node_B, PAS_type_Node_B, phi_deg_Node_B, . AS_deg_Node_B, delta_phi_deg_Node_B = dialog(string); % Configuration of UE string = sprintf('n* UE *n');N, spacing_UE, d_norm_UE, cluster_number_UE, . amplitude_cluster_UE, PAS_type_UE, phi_deg_U

30、E, AS_deg_UE, . delta_phi_deg_UE = dialog(string); % Computation of the correlation matrices% % Node B R_Node_B, Q_Node_B, sigma_deg_Node_B = correlation(M, spacing_Node_B, . d_norm_Node_B, . cluster_number_Node_B, . amplitude_cluster_Node_B, . PAS_type_Node_B, . phi_deg_Node_B, . AS_deg_Node_B, . d

31、elta_phi_deg_Node_B, Field); if (display & (M=1) figure(1); clf; switch(PAS_type_Node_B) case 1 plot_uniform(cluster_number_Node_B, Q_Node_B, phi_deg_Node_B, . AS_deg_Node_B, 1, 'b-'); case 2 plot_gaussian(cluster_number_Node_B, Q_Node_B, phi_deg_Node_B, . sigma_deg_Node_B, delta_phi_deg

32、_Node_B, 1, 'b-'); case 3 plot_laplacian(cluster_number_Node_B, Q_Node_B, phi_deg_Node_B, . sigma_deg_Node_B, delta_phi_deg_Node_B, 1, 'b-'); otherwise break; end;end; % UE R_UE, Q_UE, sigma_deg_UE = correlation(N, spacing_UE, d_norm_UE, . cluster_number_UE, . amplitude_cluster_UE, .

33、 PAS_type_UE, phi_deg_UE, . AS_deg_UE, delta_phi_deg_UE, Field);if (display & (N=1) figure(1); switch(PAS_type_UE) case 1 plot_uniform(cluster_number_UE, Q_UE, phi_deg_UE, AS_deg_UE, 2, 'b-'); case 2 plot_gaussian(cluster_number_UE, Q_UE, phi_deg_UE, sigma_deg_UE, . delta_phi_deg_UE, 2,

34、'b-'); case 3 plot_laplacian(cluster_number_UE, Q_UE, phi_deg_UE, sigma_deg_UE, . delta_phi_deg_UE, 2, 'b-'); otherwise break end;end; % Information exploitation% if Downlink nTx = M; nRx = N; R = kron(R_Node_B, R_UE)else nTx = N; nRX = M; R = kron(R_UE, R_Node_B)end;% SelfGeometry2T

35、GnCorrelation% Computation of the correlation matrices of the MIMO radio% channel model described in IEEE 802 document 11-03/940r0% for a limited set of hard-coded scenarios.% STANDARD DISCLAIMER% The Computer Science Institute of the University of Namur (hereafter% "FUNDP-INFO") is furnis

36、hing this item "as is". FUNDP-INFO does not% provide any warranty of the item whatsoever, whether express,% implied, or statutory, including, but not limited to, any warranty% of merchantability or fitness for a particular purpose or any% warranty that the contents of the item will be erro

37、r-free.% In no respect shall FUNDP-INFO incur any liability for any damages,% including, but not limited to, direct, indirect, special, or% consequential damages arising out of, resulting from, or any way% connected to the use of the item, whether or not based upon% warranty, contract, tort, or othe

38、rwise; whether or not injury was% sustained by persons or property or otherwise; and whether or not% loss was sustained from, or arose out of, the results of, the% item, or any services that may be provided by FUNDP-INFO.% (c) Laurent Schumacher, FUNDP-INFO - November 2003 clear all;close all;delete

39、 TGnCorrelationMatrices.mat; TGnScenario = 'A','B','C','D','E','F'NumberOfTxAntennas = 1,2,4;SpacingTx = .5,1,4;NumberOfRxAntennas = 1,2,4;SpacingRx = .5,1,4; qq = 1;for (kk=1:size(TGnScenario,2) for (ll=1:size(NumberOfTxAntennas,2) for (mm=1:size(Numb

40、erOfRxAntennas,2) for (nn=1:size(SpacingTx,2) for (oo=1:size(SpacingRx,2) Scenario = TGnScenario(kk),'_',num2str(NumberOfTxAntennas(ll),. 'x',num2str(NumberOfRxAntennas(mm),'_' if (SpacingTx(nn) < 1) Scenario = Scenario,'i',num2str(inv(SpacingTx(nn),'_' els

41、e Scenario=Scenario,num2str(SpacingTx(nn),'_' end; if (SpacingRx(oo) < 1) Scenario = Scenario,'i',num2str(inv(SpacingRx(oo); else Scenario=Scenario,num2str(SpacingRx(oo); end; time = clock; disp(num2str(time(4),':',num2str(time(5),'.',num2str(floor(time(6),. '

42、- Iteration ',num2str(qq),'/',num2str(size(TGnScenario,2)*. size(NumberOfTxAntennas,2)*size(NumberOfRxAntennas,2)*. size(SpacingTx,2)*size(SpacingRx,2),' - ',Scenario); % % Description of scenarios % switch TGnScenario(kk) case 'A' % Flat fading with 0 ns rms delay spread

43、 (one tap at 0 ns delay model) PDP_dB = 0; % Average power dB 0; % Relative delay (ns) % Power roll-off coefficients Power_per_angle_dB = 0; % Tx AoD_Tx_deg = 45; AS_Tx_deg = 40; Type_Tx = 3; % Rx AoA_Rx_deg = 45; AS_Rx_deg = 40; Type_Rx = 3; case 'B' % Typical residential environment, LOS c

44、onditions, 15 ns rms delay spread, and 10 dB Ricean K-factor at first delay PDP_dB = 0 -5.4287 -2.5162 -5.8905 -9.1603 -12.5105 -15.6126 -18.7147 -21.8168; % Average power dB 0 10e-9 20e-9 30e-9 40e-9 50e-9 60e-9 70e-9 80e-9 ; % Relative delay (ns) % Power roll-off coefficients Power_per_angle_dB =

45、0 -5.4287 -10.8574 -16.2860 -21.7147 -Inf -Inf -Inf -Inf; -Inf -Inf -3.2042 -6.3063 -9.4084 -12.5105 -15.6126 -18.7147 -21.8168; % Tx AoD_Tx_deg = 225.1084.*ones(1,5) -Inf.*ones(1,4); -Inf.*ones(1,2) 106.5545.*ones(1,7); AS_Tx_deg = 14.4490.*ones(1,5) -Inf.*ones(1,4); -Inf.*ones(1,2) 25.4311.*ones(1,7); Type_Tx = 3.*ones(1, size(AoD_Tx_deg, 2); % Rx AoA_Rx_deg = 4.3943.*ones(1,5) -

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論