版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、優(yōu)質(zhì)資料歡迎下載1. 到兩定點A橢圓F1(-2 B, 0),F 線段第一課橢圓及其標(biāo)準(zhǔn)方程2(2 , 0) 的距離之和為4 的點 M的軌跡是()C圓D以上都不對2. 已知橢圓x 2y23,則 P 到另一個焦點的距離251上的一點 P 到同樣一個焦點的距離為16為()A 2B 3C 5D73. 橢圓x 2y21的焦距等于 2,則 m的值為()m15A 5 3B1614C 5D 164. 橢圓x 2y21的長軸長是()425A 5B 3C 6D 105. 若方程 x 2+ky2=2 表示焦點在 y 軸上的橢圓,那么,實數(shù)k 的取值范圍是()A (0,+)B(0,2)C (1,+)D (0,1)6“
2、 k>2”是方程x 2y2k 251 “表示的曲線是橢圓”的()kA 充分不必要條件B必要不充分條件C 充要條件D既不充分條件又不必要條件7. 已知F1,F2 為橢圓x 2y21的兩個焦點,過F1的直線交橢圓于A,B兩點,若259|FA|+|F B|=12 ,則 |AB|=_2222的一個焦點,則實數(shù)k 的值是()8. 已知( 0, -4 )是橢圓 3kx +ky =1A 6B1C 24D16249. 平面內(nèi)有一長度為2 的線段AB和一動點 P,若滿足 |PA|+|PB|=6, 則 |PA| 的取值范圍是()A 1,4B 1,6C 2,6D 2,410. 已知橢圓的中心為坐標(biāo)原點,焦點在
3、 x 軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,兩準(zhǔn)線間的距離為4,求橢圓方程橢圓的幾何性質(zhì)(一)選擇題1、焦距為6,焦點在 x 軸上的橢圓經(jīng)過點( 0, -4 ),則如橢圓標(biāo)準(zhǔn)方程是A、 x2y2B、 x2y 2111003610064優(yōu)質(zhì)資料歡迎下載C、 x 2y 21D、 x 2y2125162592、方程x 2y2表示焦點在 y 軸上的橢圓,則實數(shù)m的取值范圍是7mm13A、( 3, 7)B、( 3, 5)( 5, 7)C 、(3,5)D、( 5, 7)3、過橢圓 x 2y 21 的一個焦點,且垂直于x 軸的直線被此橢圓截得的弦長為43A、 3B、3C、3D、 3224、若橢圓
4、 2kx 2+ky2=1 的一個焦點是(0, -4 ),則實數(shù) k 的值是A、 1B、 8C、 1D、328325、已知 F1、 F2 是橢圓 x2y 21的兩個焦點,過1M、 N 兩點,則259F 的直線與橢圓交于MNF的周長是2A、 10B、 16C、 20D、 326、若關(guān)于 x、 y 的方程 x2sin -y 2cos =1 所表示的曲線是橢圓,則方程(x+cos ) 2+(y+sin ) 2=1 所表示的圓的圓心在A 、第一象限B、第二象限C、第三象限D(zhuǎn)、第四象限7、已知兩橢圓ax2+y2=8 與 9x2 +25y2=100的焦距相等,則a 的值為A、9或 9B、3或3C、9或3D、
5、9或3174241728、若 F 是橢圓 x 2y 21( a>b>0)的一個焦點, MN是過中心的一條弦,則 FMN面ab 2積的最大值是A 、 abB、 acC、 bcD、 ab2(二)填空題9、橢圓4x2+2y2=1 的焦點坐標(biāo)是 _ 。10、橢圓上一點P 與兩焦點恰好構(gòu)成邊長為2的正三角形,則此橢圓標(biāo)準(zhǔn)方程為_ 。11、中心在原點,以直線 3x+4y-12=0與兩坐標(biāo)軸的交點分別作為頂點和焦點的橢圓方程是 _ 。12、對稱軸在坐標(biāo)軸上的橢圓經(jīng)過點P( 3, 0),且長軸長是短軸長的三倍,則橢圓方程是 _ 。13、若方程x 2y 21表示橢圓,則實數(shù)k 的取值范圍是 _。k5
6、3 k14、若方程x2y21 表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是k510 k_。2215 、橢圓 ax +by +ab=0( a<b<0)的焦點坐標(biāo)是 _ 。優(yōu)質(zhì)資料歡迎下載第二課雙曲線及其 幾何性質(zhì)1.已知雙曲線 x2y21 上一點 p 到雙曲線的一個焦點的距離為5,則 p 到另一個焦點的916距離為()A 11B 5C 6D 92.已知 F (0,3),F(0,-3),動點 P 滿足 |PF1|-|PF|=10 ,則 p 點的軌跡是()122A 雙曲線B雙曲線的一支C直線D一條射線3.已知雙曲線x 2y21上的一點 p 到雙曲線的一個焦點的距離為4,則點 p 到另一個
7、927焦點的距離為 _4. 雙曲線 8kx 2-ky 2=8 的一個焦點為( 0, 3),那么 k 的值為()A 1B -1C65D -65335. 雙曲線 x 2y21上的一點 p 到點( 5, 0)的距離為15,則 p 到點( -5 ,0)的距離是169()A 7B 23C 2或 5D 7或 236. 設(shè) p 為雙曲線 x 2y 21上的一動點, M為線段 OP的中點,則點 M的軌跡方程是 _47. 方程x 2y21表示雙曲線,求實數(shù) m的取值范圍m - 5| m | -28.雙曲線與橢圓x 2y2y=-x ,則雙曲線方程為161 有相同的焦點 , 它的一條漸近線為64A、 x2-y 2=
8、96B、 y2-x 2=160C、x2-y 2=80D、 y2-x 2=249、焦點為( 0, 6)且與雙曲線x 2y 21 有相同漸近線的方程是2A、 x2y 21y 2x2y2x21 D 、 x2y 2124B 、1 C 、1212122424122410、已知雙曲線x 2y 21 的實軸的一個端點為 A1,虛軸的一個端點為B1,且 |A 1B1|=5 ,則16b 2雙曲線的方程是A、 x 2y 21 B 、 x 2y 21 C 、 x 2y 21 D 、 x 2y 211625162516916911、雙曲線 x 2y 21 的焦點到準(zhǔn)線的距離是97A、 7B、 25C、7或25D 、2
9、3或9444444優(yōu)質(zhì)資料歡迎下載12、中心在原點,離心率為5 的圓錐曲線的焦點在y 軸上,則它的漸近線方程為3A、 y5 xB 、 y4 xC 、 y4 xD 、 y3 x453413、雙曲線的漸近線為y3 x ,則雙曲線的離心率為4A、 5B、5C、5或 15D 、5或532233414、準(zhǔn)線方程為y=± 1,離心率為2的雙曲線方程是A、 2x2-2y 2=1B、 x2-y 2=2C、y2-x 2=2D、 y2-x 2=-215、雙曲線4x2-9y 2=36 上一點 P 到右焦點的距離為3,則點 P 到左準(zhǔn)線的距離為A、 27 13B、27 3C、 13D、 131327916、雙曲線的兩條準(zhǔn)線把兩焦點所連線段三等分,則它的離心率為A、 2B、 3C、6D、 2 3217、與橢圓 x 2y 21 共焦點,且兩準(zhǔn)線間的距離為10 的雙曲線方程為16253A、 x 2y 21B、 y 2x 21C 、 x 2y 21D 、 y 2x 2145545353二、填空題18、經(jīng)過兩點 P1(-3, 27 ) ,P2(- 67 ,-7)的雙曲線方程是 _ 。19、經(jīng)過點 M(10, 8 ),兩條漸近線方程是y1 x 的雙曲線的方程是 _。3320、雙曲線 x2y21的右支上有 A、B、 C 三個不同的點,若
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 圖書館消防安全管理協(xié)議
- 濰坊市二手房急售合同模板
- 員工關(guān)系管理圖解
- 2022年大學(xué)環(huán)境科學(xué)專業(yè)大學(xué)物理下冊期末考試試卷-含答案
- 2022年大學(xué)水產(chǎn)專業(yè)大學(xué)物理下冊月考試題C卷-附解析
- 制造執(zhí)行系統(tǒng)操作與應(yīng)用課件 3-2-2生產(chǎn)任務(wù)派工
- 糖尿病視網(wǎng)膜病變宣教
- 2022年大學(xué)心理學(xué)專業(yè)大學(xué)物理二月考試題C卷-附解析
- 頸椎病分型及臨床表現(xiàn)
- 2022年大學(xué)環(huán)境與安全專業(yè)大學(xué)物理下冊月考試卷A卷-含答案
- 探源民國時期的金融改革歷史
- MATLAB仿真三相橋式整流電路(詳細(xì)完美)
- 文件管理系統(tǒng)畢業(yè)設(shè)計論文
- 2019年重慶普通高中會考通用技術(shù)真題及答案
- 天秤座小奏鳴曲,Libra Sonatine;迪安斯,Roland Dyens(古典吉他譜)
- 鋼筋混凝土工程施工及驗收規(guī)范最新(完整版)
- 求數(shù)列的通項公式常見類型與方法PPT課件
- 光纜施工規(guī)范及要求
- 三國志11全人物信息(五維、特技、生卒年等)
- 第六章 氣體射流
- 華南農(nóng)業(yè)大學(xué)本科生畢業(yè)論文范例Word版
評論
0/150
提交評論