版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第五章課后習(xí)題及解答1. 求下列矩陣的特征值和特征向量:(1) 解: 所以,的基礎(chǔ)解系為: 因此,的屬于的所有特征向量為: 所以,的基礎(chǔ)解系為: 因此,的屬于的所有特征向量為:(2)解: 所以,特征值為:(單根),(二重根) 所以,的基礎(chǔ)解系為: 因此,的屬于的所有特征向量為: 所以,的基礎(chǔ)解系為: 因此,的屬于的所有特征向量為:(3)解: 所以,特征值為:(三重根) 所以,的基礎(chǔ)解系為: 因此,的屬于的所有特征向量為:(為不全為零的任 意常數(shù))。(4)解: 所以,特征值為:(四重根)所以,的基礎(chǔ)解系為:因此,的屬于的所有特征向量為:()(5)解: 所以,特征值為:(三重根) 所以,的基礎(chǔ)解系
2、為: 因此,的屬于的所有特征向量為:()(6)解: 所以,特征值為:(單根), (單根), (單根), 所以,的基礎(chǔ)解系為: 因此,的屬于的所有特征向量為:() 所以,的基礎(chǔ)解系為: 因此,的屬于的所有特征向量為:() 所以,的基礎(chǔ)解系為: 因此,的屬于的所有特征向量為:()2. 已知矩陣的特征值(二重),, 求的值,并求其特征向量。解: 所以,的基礎(chǔ)解系為: 因此,的屬于3的所有特征向量為:(為不全為零的任意常數(shù)) 所以,的基礎(chǔ)解系為: 因此,的屬于12的所有特征向量為:()3. 設(shè)是矩陣不同特征值的特征向量,證明不是的一個(gè)特征向量。證:(反證法)若是的屬于特征值的一個(gè)特征向量,是的屬于特征
3、值的特征向量且,則:所以,屬于不同特征值 線性無(wú)關(guān)即與矛盾。所以,不是的一個(gè)特征向量。4. 設(shè)分別是矩陣對(duì)應(yīng)于互不相同的特征值的特征向量,證明不是的一個(gè)特征向量。證:類似3題可證。5. 證明對(duì)合矩陣(即)的特征值只能為1或.證: 的特征值只有1. 若為的特征值,則為的特征值 的特征值只能為1或.6. 設(shè)可逆,討論與的特征值(特征向量)之間的相互關(guān)系。解: 若則.7. 若問(wèn):是否成立?解:成立。8. 已知求解:相似矩陣具有相同的特征值 9. 已知求解: 10. 設(shè)是矩陣屬于特征值的特征向量。證明:是矩陣對(duì)應(yīng)其特征值的一個(gè)特征向量。證: 11. 設(shè)為非奇異矩陣,證明與相似。證:為非奇異矩陣 存在
4、與相似12. 設(shè)證明:證: 存在可逆矩陣, 使得 13. 證明:階矩陣只有零特征值,且特征子空間是的一維子空間,并求它的基。解: 只有零特征值。 的基礎(chǔ)解系為:14. 若可逆,不可逆,那么,關(guān)于的特征值能做出怎樣的斷語(yǔ)?解:可逆,不可逆 不是的特征值,1是的特征值。15. 若證明: 1或至少有一個(gè)是的特征值。證: 或 1或至少有一個(gè)是的特征值。16. 在第1題中,哪些矩陣可對(duì)角化?并對(duì)可對(duì)角化的矩陣, 求矩陣和對(duì)角矩陣, 使得解:由矩陣可對(duì)角化的條件及第1題的求解過(guò)程易知:(1), (6)可對(duì)角化。(1) (2)17. 主對(duì)角元互不相等的上(下)三角形矩陣是否與對(duì)角陣相似(說(shuō)明理由)?解:可以
5、,因?yàn)橛袀€(gè)互不相等的特征值。18. 設(shè)階矩陣的個(gè)元素全為1,試求可逆矩陣使為對(duì)角陣,并寫出與相似的對(duì)角陣。解:所以,特征值為:(單根),(重根)所以,的基礎(chǔ)解系為:所以,的基礎(chǔ)解系為:所以,與相似的對(duì)角陣為:19. 已知4階矩陣的特征值為(三重),對(duì)應(yīng)于的特征向量有對(duì)應(yīng)于的特征向量為問(wèn):可否對(duì)角化?如能對(duì)角化,求出及(為正整數(shù))。解:容易驗(yàn)證,線性無(wú)關(guān),所以,可對(duì)角化。 令則 20. 設(shè)三階矩陣有二重特征值如果都是對(duì)應(yīng)于的特征向量,問(wèn)可否對(duì)角化?解: 所以,線性無(wú)關(guān)。又因?yàn)槭S嗟哪莻€(gè)特征值是單根,所以可對(duì)角化。21. 已知(1) 求(為正整數(shù))。(2) 若求解:(1) 所以,特征值為:(單根)
6、,(單根) 所以,的基礎(chǔ)解系為:所以,的基礎(chǔ)解系為:令則:所以,(2)22. 設(shè)求(為正整數(shù))。(提示:按對(duì)角塊矩陣求.)解:令則從而, 所以,特征值為: 所以,的基礎(chǔ)解系為: 所以,的基礎(chǔ)解系為: 令 則 23. 對(duì)5.2節(jié)例1的矩陣求正交矩陣使為對(duì)角陣。解:借助5.2節(jié)例1的求解過(guò)程,對(duì)單位化,對(duì)構(gòu)成的線性無(wú)關(guān)向量組利用施密特正交化方法進(jìn)行處理,即得所求的正交矩陣為:24. 對(duì)下列實(shí)對(duì)稱矩陣求正交矩陣和對(duì)角矩陣使(1) (2) (3) (4) (5) (1) 解: 所以,特征值為:(二重根),(單根) 所以,的基礎(chǔ)解系為: 用施密特正交化方法得:所以,的基礎(chǔ)解系為:?jiǎn)挝换茫核裕?2)
7、, (3), (4), (5)類似(1)可求解。25. 設(shè)是階實(shí)對(duì)稱矩陣,且證明存在正交矩陣使得 證:設(shè)是的對(duì)應(yīng)于特征值的一個(gè)特征向量,則: 為非零向量 或0 為實(shí)對(duì)稱矩陣 存在正交矩陣使得26. 設(shè)階實(shí)對(duì)稱矩陣的特征值證明存在特征值非負(fù)的實(shí)對(duì)稱矩陣, 使得證:為實(shí)對(duì)稱矩陣 存在正交陣使得 取則滿足條件。27. 設(shè)為階實(shí)對(duì)稱冪等矩陣試求解: (求解過(guò)程參考p240例4) 補(bǔ)充題28. 設(shè)多項(xiàng)式是矩陣的一個(gè)特征值,是對(duì)應(yīng)于的特征向量。證明是的特征值,且仍是對(duì)應(yīng)于的特征向量。證: = 是的特征值,且仍是對(duì)應(yīng)于的特征向量29. 設(shè)證明:證: 存在可逆矩陣使得 30. 設(shè)已知0是的二重特征值,1是的(
8、一重)特征值,求矩陣的特征多項(xiàng)式解: 的所有特征值為:0(二重根),1(單根),(單根) 31. 設(shè)階矩陣的每行元素之和皆為1,問(wèn):能否至少求得的一個(gè)特征值?解:設(shè)則: 即: 所以,的一個(gè)特征值為1.32. 設(shè)是矩陣的個(gè)特征值,證明:證:是矩陣的個(gè)特征值 是的個(gè)特征值 的主對(duì)角元之和 =33. 設(shè)是對(duì)應(yīng)于特征值的特征向量,證明:(的特征子空間)證: 34. 證明: 若階矩陣有個(gè)互不相同的特征值,則的充要條件是的特征向量也是的特征向量。證:(充分性) 不妨設(shè)是的個(gè)線性無(wú)關(guān)的特征向量(因?yàn)?,有個(gè)互不相同的特征值,所以,必可取出這樣的) 的特征向量也是的特征向量也是的個(gè)線性無(wú)關(guān)的特征向量令則(為對(duì)角
9、形矩陣),則所以,(必要性) 由33題可知:若是對(duì)應(yīng)于特征值的特征向量,則有個(gè)互不相同的特征值 是一維的特征子空間為中的非零向量 存在使得即也是的特征向量。35. 設(shè)皆為階矩陣,證明:可逆的充要條件為的任一特征值都不是的特征值。(提示:設(shè)利用不是的特征值時(shí),討論的充分必要條件。)證:設(shè), 則 所以,的充要條件是即()都不是的特征值。36. 證明反對(duì)稱實(shí)矩陣的特征值是0或純虛數(shù)。證:設(shè)為反對(duì)稱實(shí)矩陣,則 設(shè)是對(duì)應(yīng)于特征值的一特征向量,即 是0或純虛數(shù)37. 已知中兩個(gè)非零的正交向量證明:矩陣的特征值全為0,且不可對(duì)角化。證:為兩個(gè)非零正交實(shí)向量 的特征值全為0 若為的特征值,則為的特征值 的特征
10、值全為0 的基礎(chǔ)解系中含個(gè)向量 不可對(duì)角化38. 設(shè)且試求矩陣的特征值,并求可逆矩陣使成對(duì)角形。解: 0是的特征值且是的特征方程的重根。 的所有特征值之和等于其主對(duì)角元之和 是的特征方程的單根 的每列向量都是的解 可取為的一個(gè)基礎(chǔ)解系 的一個(gè)基礎(chǔ)解系為:可取39. 已知的一個(gè)特征向量(1) 確定及對(duì)應(yīng)的特征值;(2) 能否相似于對(duì)角矩陣?說(shuō)明理由。解:(1)由求解得:(2) 特征值為:(三重根) 只有一個(gè)線性無(wú)關(guān)的特征向量 不能與對(duì)角矩陣相似40. 設(shè)已知且有一特征值其特征向量試求及解:是的一特征值,是對(duì)應(yīng)的一特征向量 由及可得到41. 設(shè)已知有3個(gè)線性無(wú)關(guān)的特征向量,且是其二重特征值,求使(對(duì)角矩陣)。解:有3個(gè)線性無(wú)關(guān)的特征向量 可對(duì)角化 屬于的線性無(wú)關(guān)的特征向量有兩個(gè) 設(shè)另一特征值為則 的一基礎(chǔ)解系為: 的一基礎(chǔ)解系為: 可取則42. 設(shè)均為非零向量,已知試求:(1) (2) 的特征值與特征向量。解:(1) (2) 0是的特征值 的一基礎(chǔ)解系為: 0至少是重特征值。設(shè)另一特征值為則:0是的特征方程的重根。的特征值
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 圖形旋轉(zhuǎn) 課件
- 科學(xué)樹葉 課件
- 雙星輪胎 課件
- 人教版老王課件
- 幼兒園小班音樂(lè)《袋鼠媽媽》課件
- 西京學(xué)院《英漢口譯》2023-2024學(xué)年第一學(xué)期期末試卷
- 物理課件變阻器
- 不銹鋼拋光性能差的原因
- 西京學(xué)院《包裝設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《植物地理學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 1.1公有制為主體+多種所有制經(jīng)濟(jì)共同發(fā)展課件-高中政治統(tǒng)編版必修二經(jīng)濟(jì)與社會(huì)
- 2024年中國(guó)空氣凈化節(jié)能燈市場(chǎng)調(diào)查研究報(bào)告
- 2024年有償贈(zèng)與合同范本
- 2024-2025學(xué)年人教版物理九年級(jí)上學(xué)期期中測(cè)試物理模擬試卷
- 某食品有限公司安全生產(chǎn)風(fēng)險(xiǎn)評(píng)估分級(jí)管控手冊(cè)
- (工作計(jì)劃)非物質(zhì)文化遺產(chǎn)保護(hù)方案
- 下肢深靜脈血栓的預(yù)防和護(hù)理新進(jìn)展
- 大學(xué)生國(guó)家安全教育學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 學(xué)術(shù)論文文獻(xiàn)閱讀與機(jī)助漢英翻譯智慧樹知到答案2024年重慶大學(xué)
- 2024分布式光伏并網(wǎng)發(fā)電系統(tǒng)設(shè)計(jì)導(dǎo)則
- 老年心房顫動(dòng)診治中國(guó)專家共識(shí)(2024)解讀
評(píng)論
0/150
提交評(píng)論