![新人教版16.1二次根式(第一課時)_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/29/aa2807f9-34cd-45cb-9bd4-6a5d814a55bd/aa2807f9-34cd-45cb-9bd4-6a5d814a55bd1.gif)
![新人教版16.1二次根式(第一課時)_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/29/aa2807f9-34cd-45cb-9bd4-6a5d814a55bd/aa2807f9-34cd-45cb-9bd4-6a5d814a55bd2.gif)
![新人教版16.1二次根式(第一課時)_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/29/aa2807f9-34cd-45cb-9bd4-6a5d814a55bd/aa2807f9-34cd-45cb-9bd4-6a5d814a55bd3.gif)
![新人教版16.1二次根式(第一課時)_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/29/aa2807f9-34cd-45cb-9bd4-6a5d814a55bd/aa2807f9-34cd-45cb-9bd4-6a5d814a55bd4.gif)
![新人教版16.1二次根式(第一課時)_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/29/aa2807f9-34cd-45cb-9bd4-6a5d814a55bd/aa2807f9-34cd-45cb-9bd4-6a5d814a55bd5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、什么是一個數(shù)的算術(shù)平方根?如何表示?什么是一個數(shù)的算術(shù)平方根?如何表示?什么叫做一個數(shù)的平方根?如何表示?什么叫做一個數(shù)的平方根?如何表示?一般地,若一個數(shù)的平方等于一般地,若一個數(shù)的平方等于a a,則,則這個數(shù)就叫做這個數(shù)就叫做a a的平方根。的平方根。用用 (a0)表示。表示。a若一個正數(shù)的平方等于若一個正數(shù)的平方等于a a,則這個數(shù)就,則這個數(shù)就叫做叫做a a的算術(shù)平方根。的算術(shù)平方根。a a的平方根是的平方根是aaa 正數(shù)有兩個平方根且互為相反數(shù);正數(shù)有兩個平方根且互為相反數(shù); 0 0有一個平方根就是有一個平方根就是0 0; 負(fù)數(shù)沒有平方根。負(fù)數(shù)沒有平方根。歸納:歸納:平平方根的性質(zhì):
2、方根的性質(zhì):1、16的平方根是什么的平方根是什么? 算術(shù)平方根是什么?算術(shù)平方根是什么?2、0的平方根是什么?算術(shù)平方根是什么?的平方根是什么?算術(shù)平方根是什么?3、7有沒有平方根?有沒有算術(shù)平方根?有沒有平方根?有沒有算術(shù)平方根?正數(shù)和正數(shù)和0都有算術(shù)平方根;都有算術(shù)平方根;負(fù)數(shù)沒有算術(shù)平方根。負(fù)數(shù)沒有算術(shù)平方根。復(fù)習(xí)復(fù)習(xí)1、如果、如果 ,那么,那么 ;42xx2、如果、如果 ,那么,那么 ;32xx3、如果、如果 ,)0(2aaxx那么那么 。x2 23a 1.面積為面積為2的正方形的邊長為的正方形的邊長為_ ,面積為,面積為S的正方形的邊長為的正方形的邊長為_。2.2.一長方形圍欄,長是
3、寬的一長方形圍欄,長是寬的2倍,倍,面積為面積為130,則它的寬為,則它的寬為_65S3 3. .h=5th=5t2 2, ,則則t=_t=_5h2導(dǎo)入導(dǎo)入你認(rèn)為所得的各式有你認(rèn)為所得的各式有哪些共同點哪些共同點?65S5h表示一些正數(shù)的算術(shù)平方根表示一些正數(shù)的算術(shù)平方根2新授新授:.的式子叫做二次根式形如 a)0( aa被開方數(shù)被開方數(shù)二次根號二次根號形如形如 的式子叫做的式子叫做二次根式二次根式.)0( aaa叫叫被開方數(shù)被開方數(shù)定義包含三個內(nèi)容定義包含三個內(nèi)容:1.必需含有二次根號必需含有二次根號 “ ”.2.被開方數(shù)被開方數(shù)a0.3.a可以是數(shù)可以是數(shù),也可以是含有字母的式子也可以是含
4、有字母的式子.歸納歸納請你憑著自己已有的知識請你憑著自己已有的知識,說說說對二次根式說對二次根式 的認(rèn)識!的認(rèn)識!a ?a(0).a a 形如的式子叫做二次根式2. a可以是數(shù)可以是數(shù),也可以是式子也可以是式子.3. 形式上含有二次根號形式上含有二次根號4. a0, 0 5.既可表示開方運算既可表示開方運算,也可表示運算的結(jié)果也可表示運算的結(jié)果.1.表示表示a的算術(shù)平方根的算術(shù)平方根( ( 雙重非負(fù)性雙重非負(fù)性) ) 53x1a23a21x 141、下列式子中,哪些一定是二次根式?、下列式子中,哪些一定是二次根式?二次根式根號內(nèi)字母的取值范圍必須滿足二次根式根號內(nèi)字母的取值范圍必須滿足: 被開
5、方數(shù)大于或等于零被開方數(shù)大于或等于零.試一試試一試12x),(同號yxxy(x0 )( a =0 )( a 0 ) ) 0( ,2aaaaa 2)(例題例題2(2)21,3.xxx 其中2(1)(3) ;例例2 求下列二次根式的值:求下列二次根式的值:解:解:2(3)3因為因為 0,所以,所以| |= ( )= 333所以,所以,2(3)3.3| |(1)22(2)21(1)xxx 解:解:1x| |當(dāng)當(dāng) 時,原式時,原式= 3x 3 1| |=31所以,當(dāng)所以,當(dāng) 時,元二次根式時,元二次根式的值是的值是 .3x 31 2211(x(xy)y)21:原式解跟蹤練習(xí)跟蹤練習(xí)將下列各式化簡:將下
6、列各式化簡: 2223yxyxyxxy0 xy )yx(原式(2)2:()x y解原 式xy(1 2) 12 42例例3 3、化簡及求值:、化簡及求值:(1) (1) ( (2) 2) ( (3) 3) ( (a a0,b0,b0 0) )(4)(4) 其其中中a=a= (5)(5)4a22a b21 2a a22) 12()21 (342(1) (2) (3) (1) (2) (3) (a (a0,b0,b0)0)(4)(4) 其中其中a=a= 4a22a b21 2a a22) 12()21 (422解:原式22aa解:原式ab解:原式1) 1(:2aa原式解2212121221解:原式0
7、, 0ba0abab原式31313133)(時,原式當(dāng)a(5)(5)例例4:232)1(計算22)()(,)2(cabcbaABCcba化簡的三邊長為已知練習(xí)練習(xí):用心算一算用心算一算: 251 272 2233 2214571812 2225yxyx(x(xy)y)xy解:原式=22(3)(1)xx=|x-3|+|x+1|x-3|+|x+1|-1x3 , x-3-1x00 , x+10原式原式 = (3-x) + (x+1) = 4= (3-x) + (x+1) = 4_,4)4(2的取值范圍是則思考:若mmmmm4?)4(24m404mm41682mmm1.若若 ,則則x的取值范圍為的取值
8、范圍為 ( )xx1)1 (2(A) x1 (B) x1 (C) 0 x1 (D)一切有理數(shù)一切有理數(shù)A2.實數(shù)實數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡在數(shù)軸上的位置如圖所示,化簡 22()()abbccaabc2()b c a 2()c a b 2()b c a 3.3.已知已知a a,b b,c c為為ABCABC的三邊長,化簡:的三邊長,化簡:+ +- -0)(, 0)(, 0,acbbacacbcba是三角形三邊這一類問題注意把二次根式的運算搭載在三角形三邊之間的關(guān)系這一類問題注意把二次根式的運算搭載在三角形三邊之間的關(guān)系這個知識點上,特別要應(yīng)用好。這個知識點上,特別要應(yīng)用好。acb
9、bacacb解:原式cabacbcbaacb3原式已知已知a.ba.b為實數(shù),且滿足為實數(shù),且滿足 求求a a 的值的值. .12112bba歸納歸納二次根式的非負(fù)性:二次根式的非負(fù)性:0a二次根式的雙重非負(fù)性:二次根式的雙重非負(fù)性:00aaa3.3.根據(jù)非負(fù)數(shù)的性質(zhì),就可以確定字母的值根據(jù)非負(fù)數(shù)的性質(zhì),就可以確定字母的值. .2.2.如果幾個非負(fù)數(shù)的和為零,那么每一個非負(fù)數(shù)都為零如果幾個非負(fù)數(shù)的和為零,那么每一個非負(fù)數(shù)都為零. .到現(xiàn)在為止,我們已學(xué)過哪些數(shù)非負(fù)數(shù)形式?到現(xiàn)在為止,我們已學(xué)過哪些數(shù)非負(fù)數(shù)形式?思考:思考:為偶數(shù))nan()0(aaa的雙重非負(fù)性再議a非負(fù)數(shù)非負(fù)數(shù)的性質(zhì):的性質(zhì)
10、:1.1.幾個非負(fù)數(shù)的和、積、商、乘方及幾個非負(fù)數(shù)的和、積、商、乘方及算術(shù)平方根仍是非負(fù)數(shù)算術(shù)平方根仍是非負(fù)數(shù)cbacba則若(, 023) 223 ?若若a.b為實數(shù)為實數(shù),且且求求 的值的值022ba1222bba解解: 20a,02 b022ba而20a ,02b22ab , 31212212222ba原式()()(),(),時,時,、當(dāng)、當(dāng)yxyx0311的值。的值。求求、已知、已知xyzzyx0236522-13(-5)2(-2)=202.2.已知已知a.ba.b為實數(shù),且滿足為實數(shù),且滿足 你能求出你能求出a+ba+b 的值嗎?的值嗎?12112bba722baba 21.1.若若
11、=0=0,則,則=_=_。3、已知、已知 有意義有意義,那那A(a, )在在 象限象限.第二第二a1a4、2+3-x的最小值為,此時的最小值為,此時x的值為的值為。323的值。求:互為相反數(shù),與:已知bababa,86_, 522xyxxy則已知25 ?2-X02-X0X-20X-20 x x2 2x2x2x=2,x=2, y=5y=5實數(shù)實數(shù)p在數(shù)軸上的位置如圖所示,化在數(shù)軸上的位置如圖所示,化簡簡 222)1 (pp121)2(1pppp在實數(shù)范圍內(nèi)分解因式在實數(shù)范圍內(nèi)分解因式:4 - 3 ?2x233 ) 32)(32 (3)2 (34222xxxx解解: :把下列各式寫成平方差的形式,
12、把下列各式寫成平方差的形式, 再在再在實數(shù)范圍內(nèi)分解因式;實數(shù)范圍內(nèi)分解因式;54) 1 (2x103)2(2a2252) 1 ()()(原式解、x22103)2()()(原式a)52)(52(xx)103)(103(aa思路啟迪:思路啟迪:利用利用 可以把任何一可以把任何一個非負(fù)數(shù)或非負(fù)式子寫成完全平方形式個非負(fù)數(shù)或非負(fù)式子寫成完全平方形式 02aaa把下列各式寫成平方差的形式,把下列各式寫成平方差的形式, 再在再在實數(shù)范圍內(nèi)分解因式;實數(shù)范圍內(nèi)分解因式;9)3(4a96)4(24 aa2223)3()(原式a22)3()4( a原式)3)(3(22aa)3)(3)(3(2aaa22)3()3(aa.的式子叫做二次根式形如 a)0( a二次根式的定義二次根式的定義: :二次根式的性質(zhì)二次根式的性質(zhì): :(雙重非負(fù)性).0,0aa)0(2aaaa (a 0)a (a 0)-a (a-a (a0)0)= a a 2a_2162取值范圍是的中字母下列式子x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年債權(quán)管理與轉(zhuǎn)讓策劃合同樣本
- 2025年企業(yè)供應(yīng)鏈物流外包項目協(xié)議
- 2025年債權(quán)讓與四方合同策劃范本
- 2025年倉庫管理員職責(zé)與待遇合同
- 2025年具有法律效力的個人投資對賭協(xié)議
- 2025年電子點火沼氣燈項目申請報告模范
- 2025年熱熔膠膠粉及膠粒項目規(guī)劃申請報告模范
- 2025年雙方教育合作框架協(xié)議
- 2025年冬季社會實踐活動協(xié)議范本
- 2025年教育實踐基地聯(lián)盟發(fā)展與協(xié)作策劃協(xié)議
- 2025春季學(xué)期少先隊工作安排表
- 2024中國糖果、巧克力制造市場前景及投資研究報告
- 2025年紀(jì)檢辦公室工作計劃范文
- 2024年保險公司柜員年終工作總結(jié)
- GB 14907-2018鋼結(jié)構(gòu)防火涂料
- 2022《化工裝置安全試車工作規(guī)范》精選ppt課件
- 吞咽障礙篩查表
- 汽車系統(tǒng)動力學(xué)-輪胎動力學(xué)
- 艾琳歆日內(nèi)交易2011-2月至4月份圖表
- 中國民航國內(nèi)航空匯編航路314系列航線
- 山西特色文化簡介(課堂PPT)
評論
0/150
提交評論