《點集拓?fù)鋵W(xué)》第6章 §6.1,Hausdorff空間_第1頁
《點集拓?fù)鋵W(xué)》第6章 §6.1,Hausdorff空間_第2頁
《點集拓?fù)鋵W(xué)》第6章 §6.1,Hausdorff空間_第3頁
《點集拓?fù)鋵W(xué)》第6章 §6.1,Hausdorff空間_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、第6章分離性公理§6.1,Hausdorff空間本節(jié)重點:掌握空間的定義及它們之間的不同與聯(lián)系;掌握各空間的充要條件;熟記常見的各種空間.現(xiàn)在我們回到我們在第二章中提出來的什么樣的拓?fù)淇臻g的拓?fù)淇梢杂伤哪骋粋€度量誘導(dǎo)出來這一問題為了回答這個問題勢必要求我們對度量空間的拓?fù)湫再|(zhì)有充分的了解讀者將會發(fā)現(xiàn),本章中所提到的諸分離性公理,實際上是模仿度量空間的拓?fù)湫再|(zhì)逐步建立起來的對諸分離性的充分研究使我們在§6.5中能夠?qū)τ谇笆鰡栴}作一個比較深刻的(雖然不是完全的)回答定義6.1.1設(shè)X是一個拓?fù)淇臻g,如果X中的任意兩個不相同的點中必有一個點有一個開鄰域不包含另一個點(即如果x,

2、yX,xy,則或者x有一個開鄰域U使得yU,或者y有一個開鄰域V使得xV),則稱拓?fù)淇臻gX是一個空間拓?fù)淇臻g自然不必都是空間,例如包含著不少于兩個點的平庸空間就不是空間定理6.1.1拓?fù)淇臻gX是一個空間當(dāng)且僅當(dāng)X中任意兩個不同的單點集有不同的閉包(即如果x,yX,xy,則)證明充分性:設(shè)定理中的條件成立則對于任何x,yX,xy,由于,因此或者成立,或者成立當(dāng)前者成立時,必定有(因為否則).這推出x有一個不包含y的開鄰域同理,當(dāng)后者成立時,y有一個不包含x的開鄰域這證明X是一個空間必要性:設(shè)X是一個空間若x,yX,xy,則或者x有一個開鄰域U使得或者y有一個開鄰域V使得若屬前一種情形,由于,若屬

3、后一種情形,同樣也有定義6.1.2設(shè)X是一個拓?fù)淇臻g如果X中的任意兩個不相同的點中每一個點都有一個開鄰域不包含另一個點,則稱拓?fù)淇臻gX是一個空間空間當(dāng)然是空間但反之不然例如設(shè)X=0,1,T=,0,X,則T是X的一個拓?fù)?,并且拓?fù)淇臻g(X,T)是的但不是的(請讀者自己驗證,)定理6.1.2設(shè)X是一個拓?fù)淇臻g,則以下條件等價:(1)X是一個空間;(2)X中每一個單點集都是閉集;(3)X中每一個有限子集都是閉集證明(1)蘊涵(2)設(shè)xX當(dāng)X是一個空間時,對于任何yX,yx,點x有一個鄰域U使得,即.這證明單點集x是一個閉集(2)蘊涵(3)這是顯然的.因為有限個閉集的并仍然是閉集.(3)蘊涵(1)設(shè)x

4、,yX,xy,當(dāng)(3)成立時單點集x和y都是閉集從而分別是y和x的開鄰域,前者不包含x,后者不包含y這就證明了X是一個空間.下面的兩個定理表明,空間中關(guān)于凝聚點和序列收斂的性質(zhì)和我們在數(shù)學(xué)分析中熟知的多了一些類似之處定理6.1.3設(shè)X是一個空間則點xX是X的子集A的一個凝聚點當(dāng)且僅當(dāng)x的每一個鄰域U中都含有A中的無限多個點,即UA是一個無限集證明定理充分性部分是明顯的以下證明必要性部分假設(shè)xX,xd(A)如果x有一個開鄰域U使得UA是一個有限集,則集合B=UA-x也是一個有限集,因此是一個閉集因此UB是一個開集,并且是x的一個鄰域此外易見(UB)(A-x)=.這蘊含著x不是A的凝聚點,與假設(shè)矛

5、盾定理6.1.4設(shè)X是一個空間則X中的一個由有限個點構(gòu)成的序列(即集合|iZ+是一個有限集)收斂于點xX當(dāng)且僅當(dāng)存在N0使得=x對于任何iN成立證明由于X是一個空間,集合A|x,i=1,2是一個有限集,所以是一個閉集從而是x的一個開鄰域于是存在N0使得當(dāng)iN有,因而=x.定義6.1.3設(shè)X是一個拓?fù)淇臻g如果X中任何兩個不相同的點各自有一個開鄰域使得這兩個開鄰域互不相交(即如果x,yX,xy,則點x有一個開鄰域U,點y有一個開鄰域V,使得UV=),則稱拓?fù)淇臻gX是一個Hausdorff空間,或空間hausdorff空間一定是空間,但反之不然例6.1.1非Hausdorff的空間的例子設(shè)X是一個包含著無限多個點的有限補空間由于X中的每一個有限子集都是閉集,因此它是一個空間然而在拓?fù)淇臻gX中任何兩個非空的開集一定會有非空的交這是因為X中每一個非空開集都是X中的有限子集的補集,而X又是一個無限集的緣故由此易見X必然不是一個空間定理6.1.5Hausdorff空間中的任何一個收斂序列只有一個極限點證明設(shè)是Hausdorff空間X中的一個序列,并且有于是對于j1,2,點有一個開鄰域,使得故存在O使得當(dāng)i時有任意選取Mmax可見,這是一個矛盾但在空間中定理6.1.5卻可以不成立例如設(shè)拓?fù)淇臻gX如例6.1.1中所述,是X中的任何一個由兩兩不同的點構(gòu)成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論