數(shù)學(xué)定理公式_第1頁(yè)
數(shù)學(xué)定理公式_第2頁(yè)
數(shù)學(xué)定理公式_第3頁(yè)
數(shù)學(xué)定理公式_第4頁(yè)
數(shù)學(xué)定理公式_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、初中數(shù)學(xué)總復(fù)習(xí)提綱 第一章 實(shí)數(shù) 重點(diǎn) 實(shí)數(shù)的有關(guān)概念及性質(zhì),實(shí)數(shù)的運(yùn)算 內(nèi)容提要 一、 重要概念 1數(shù)的分類及概念 數(shù)系表: 說(shuō)明:“分類”的原則:1)相稱(不重、不漏) 2)有標(biāo)準(zhǔn) 2非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0) 常見(jiàn)的非負(fù)數(shù)有: 性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。 3倒數(shù): 定義及表示法 性質(zhì):A.a1/a(a1);B.1/a中,a0;C.0a1時(shí)1/a1;a1時(shí),1/a1;D.積為1。 4相反數(shù): 定義及表示法 性質(zhì):A.a0時(shí),a-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。 5數(shù)軸:定義(“三要素”) 作用:A.直觀地比較實(shí)數(shù)的大小;B.明確體

2、現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。 6奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)自然數(shù)) 定義及表示: 奇數(shù):2n-1 偶數(shù):2n(n為自然數(shù)) 7絕對(duì)值:定義(兩種): 代數(shù)定義: 幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。 a0,符號(hào)“”是“非負(fù)數(shù)”的標(biāo)志;數(shù)a的絕對(duì)值只有一個(gè);處理任何類型的題目,只要其中有“”出現(xiàn),其關(guān)鍵一步是去掉“”符號(hào)。 二、 實(shí)數(shù)的運(yùn)算 1 運(yùn)算法則(加、減、乘、除、乘方、開(kāi)方) 2 運(yùn)算定律(五個(gè)加法乘法交換律、結(jié)合律;乘法對(duì)加法的 分配律) 3 運(yùn)算順序:A.高級(jí)運(yùn)算到低級(jí)運(yùn)算;B.(同級(jí)運(yùn)算)從“左” 到“右”(如5 5);C

3、.(有括號(hào)時(shí))由“小”到“中”到“大”。 三、 應(yīng)用舉例(略) 附:典型例題 1 已知:a、b、x在數(shù)軸上的位置如下圖,求證:x-a+x-b=b-a. 2.已知:a-b=-2且abba+cb+c abacbc(c0) abacbc(cb,bcac ab,cda+cb+d. 5一元一次不等式的解、解一元一次不等式 6一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集) 7應(yīng)用舉例(略) 第八章 函數(shù)及其圖象 重點(diǎn)正、反比例函數(shù),一次、二次函數(shù)的圖象和性質(zhì)。 內(nèi)容提要 一、平面直角坐標(biāo)系 1各象限內(nèi)點(diǎn)的坐標(biāo)的特點(diǎn) 2坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn) 3關(guān)于坐標(biāo)軸、原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn) 4坐標(biāo)平面

4、內(nèi)點(diǎn)與有序?qū)崝?shù)對(duì)的對(duì)應(yīng)關(guān)系 二、函數(shù) 1表示方法:解析法;列表法;圖象法。 2確定自變量取值范圍的原則:使代數(shù)式有意義;使實(shí)際問(wèn)題有 意義。 3畫函數(shù)圖象:列表;描點(diǎn);連線。 三、幾種特殊函數(shù) (定義圖象性質(zhì)) 1 正比例函數(shù) 定義:y=kx(k0) 或y/x=k。 圖象:直線(過(guò)原點(diǎn)) 性質(zhì):k0,k0,k0時(shí),開(kāi)口向上;a0時(shí),在對(duì)稱軸左側(cè),右側(cè);a0時(shí),圖象位于,y隨x;k0時(shí),圖象位于,y隨x;兩支曲線無(wú)限接近于坐標(biāo)軸但永遠(yuǎn)不能到達(dá)坐標(biāo)軸。 四、重要解題方法 1 用待定系數(shù)法求解析式(列方程組求解)。對(duì)求二次函數(shù)的解析式,要合理選用一般式或頂點(diǎn)式,并應(yīng)充分運(yùn)用拋物線關(guān)于對(duì)稱軸對(duì)稱的特點(diǎn)

5、,尋找新的點(diǎn)的坐標(biāo)。如下圖: 2利用圖象一次(正比例)函數(shù)、反比例函數(shù)、二次函數(shù)中的k、b;a、b、c的符號(hào)。 六、應(yīng)用舉例(略) 第九章 解直角三角形 重點(diǎn)解直角三角形 內(nèi)容提要 一、三角函數(shù) 1定義:在RtABC中,C=Rt,則sinA= ;cosA= ;tgA= ;ctgA= . 2 特殊角的三角函數(shù)值: 0 30 45 60 90 sin cos tg / ctg / 3 互余兩角的三角函數(shù)關(guān)系:sin(90-)=cos; 4 三角函數(shù)值隨角度變化的關(guān)系 5查三角函數(shù)表 二、解直角三角形 1 定義:已知邊和角(兩個(gè),其中必有一邊)所有未知的邊和角。 2 依據(jù):邊的關(guān)系: 角的關(guān)系:A+

6、B=90 邊角關(guān)系:三角函數(shù)的定義。 注意:盡量避免使用中間數(shù)據(jù)和除法。 三、對(duì)實(shí)際問(wèn)題的處理 1 俯、仰角: 2方位角、象限角: 3坡度: 4在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。 四、應(yīng)用舉例(略) 第三章 統(tǒng)計(jì)初步 重點(diǎn) 內(nèi)容提要 一、 重要概念 1.總體:考察對(duì)象的全體。 2.個(gè)體:總體中每一個(gè)考察對(duì)象。 3.樣本:從總體中抽出的一部分個(gè)體。 4.樣本容量:樣本中個(gè)體的數(shù)目。 5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。 6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個(gè)數(shù)(或最中間位置的兩個(gè)數(shù)據(jù)的平均數(shù)) 二、 計(jì)算方法 1.樣本平均數(shù): ;若 ,

7、 , ,則 (a常數(shù), , , 接近較整的常數(shù)a);加權(quán)平均數(shù): ;平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(shì)(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計(jì)總體平均數(shù),樣本容量越大,估計(jì)越準(zhǔn)確。 2樣本方差: ;若 , , ,則 (a接近 、 、 的平均數(shù)的較“整”的常數(shù));若 、 、 較“小”較“整”,則 ;樣本方差是刻劃數(shù)據(jù)的離散程度(波動(dòng)大小)的特征數(shù),當(dāng)樣本容量較大時(shí),樣本方差非常接近總體方差,通常用樣本方差去估計(jì)總體方差。 3樣本標(biāo)準(zhǔn)差: 三、 應(yīng)用舉例(略)第四章 直線形 重點(diǎn)相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。 內(nèi)容提要 一、 直線、相交線、平行線 1線段、射線、直線三者的區(qū)別與

8、聯(lián)系 從“圖形”、“表示法”、“界限”、“端點(diǎn)個(gè)數(shù)”、“基本性質(zhì)”等方面加以分析。 2線段的中點(diǎn)及表示 3直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”) 4兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線) 5角(平角、周角、直角、銳角、鈍角) 6互為余角、互為補(bǔ)角及表示方法 7角的平分線及其表示 8垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”) 9對(duì)頂角及性質(zhì) 10平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系) 11常用定理:同平行于一條直線的兩條直線平行(傳遞性);同垂直于一條直線的兩條直線平行。 12定義、命題、命題的組成 13公理、定理 14逆命

9、題 二、 三角形 分類:按邊分; 按角分 1定義(包括內(nèi)、外角) 2三角形的邊角關(guān)系:角與角:內(nèi)角和及推論;外角和;n邊形內(nèi)角和;n邊形外角和。邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。角與邊:在同一三角形中, 3三角形的主要線段 討論:定義線的交點(diǎn)三角形的心性質(zhì) 高線中線角平分線中垂線中位線 一般三角形特殊三角形:直角三角形、等腰三角形、等邊三角形 4特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì) 5全等三角形 一般三角形全等的判定(SAS、ASA、AAS、SSS) 特殊三角形全等的判定:一般方法專用方法 6三角形的面積 一般計(jì)算公式性質(zhì):等底等高的

10、三角形面積相等。 7重要輔助線 中點(diǎn)配中點(diǎn)構(gòu)成中位線;加倍中線;添加輔助平行線 8證明方法 直接證法:綜合法、分析法 間接證法反證法:反設(shè)歸謬結(jié)論 證線段相等、角相等常通過(guò)證三角形全等 證線段倍分關(guān)系:加倍法、折半法 證線段和差關(guān)系:延結(jié)法、截余法 證面積關(guān)系:將面積表示出來(lái) 三、 四邊形 分類表: 1一般性質(zhì)(角) 內(nèi)角和:360 順次連結(jié)各邊中點(diǎn)得平行四邊形。 推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。 外角和:360 2特殊四邊形 研究它們的一般方法: 平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定 判定步驟:四邊形平行四邊形矩形正方形 菱形 對(duì)角線的紐帶作用:

11、 3對(duì)稱圖形 軸對(duì)稱(定義及性質(zhì));中心對(duì)稱(定義及性質(zhì)) 4有關(guān)定理:平行線等分線段定理及其推論1、2 三角形、梯形的中位線定理 平行線間的距離處處相等。(如,找下圖中面積相等的三角形) 5重要輔助線:常連結(jié)四邊形的對(duì)角線;梯形中?!捌揭埔谎薄ⅰ捌揭茖?duì)角線”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交”轉(zhuǎn)化為三角形。 6作圖:任意等分線段。 四、 應(yīng)用舉例(略)推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。 第七章 相似形 重點(diǎn)相似三角形的判定和性質(zhì) 內(nèi)容提要 一、本章的兩套定理 第一套(比例的有關(guān)性質(zhì)): 涉及概念:第四比例項(xiàng)比例中項(xiàng)比的前項(xiàng)、后項(xiàng),比的內(nèi)項(xiàng)、外項(xiàng)黃金分割等。

12、 第二套: 注意:定理中“對(duì)應(yīng)”二字的含義; 平行相似(比例線段)平行。 二、相似三角形性質(zhì) 1對(duì)應(yīng)線段;2對(duì)應(yīng)周長(zhǎng);3對(duì)應(yīng)面積。 三、相關(guān)作圖 作第四比例項(xiàng);作比例中項(xiàng)。 四、證(解)題規(guī)律、輔助線 1“等積”變“比例”,“比例”找“相似”。 2找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來(lái)。 3添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。 4對(duì)比例問(wèn)題,常用處理方法是將“一份”看著k;對(duì)于等比問(wèn)題,常用處理辦法是設(shè)“公比”為k。 5對(duì)于復(fù)雜的幾何圖形,采用將部分需要的圖形(或基本圖形)“抽”出來(lái)的辦法處理。 五、 應(yīng)用舉例(略)第十章 圓 重點(diǎn)圓的重要性質(zhì);直線與圓、圓

13、與圓的位置關(guān)系;與圓有關(guān)的角的定理;與圓有關(guān)的比例線段定理。 內(nèi)容提要 一、圓的基本性質(zhì) 1圓的定義(兩種) 2有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。 3“三點(diǎn)定圓”定理 4垂徑定理及其推論 5“等對(duì)等”定理及其推論 5 與圓有關(guān)的角:圓心角定義(等對(duì)等定理) 圓周角定義(圓周角定理,與圓心角的關(guān)系) 弦切角定義(弦切角定理) 二、直線和圓的位置關(guān)系 1.三種位置及判定與性質(zhì): 2.切線的性質(zhì)(重點(diǎn)) 3.切線的判定定理(重點(diǎn))。圓的切線的判定有 4切線長(zhǎng)定理 三、圓換圓的位置關(guān)系 1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切) 2.相切(交)兩圓連心線的性

14、質(zhì)定理 3.兩圓的公切線:定義性質(zhì) 四、與圓有關(guān)的比例線段 1.相交弦定理 2.切割線定理 五、與和正多邊形 1.圓的內(nèi)接、外切多邊形(三角形、四邊形) 2.三角形的外接圓、內(nèi)切圓及性質(zhì) 3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì) 4.正多邊形及計(jì)算 中心角: 內(nèi)角的一半: (右圖) (解RtOAM可求出相關(guān)元素, 、 等) 六、 一組計(jì)算公式 1.圓周長(zhǎng)公式 2.圓面積公式 3.扇形面積公式 4.弧長(zhǎng)公式 5.弓形面積的計(jì)算方法 6.圓柱、圓錐的側(cè)面展開(kāi)圖及相關(guān)計(jì)算 七、 點(diǎn)的軌跡 六條基本軌跡 八、 有關(guān)作圖 1.作三角形的外接圓、內(nèi)切圓 2.平分已知弧 3.作已知兩線段的比例中項(xiàng) 4.等分圓周

15、:4、8;6、3等分 九、 基本圖形 十、 重要輔助線 1.作半徑 2.見(jiàn)弦往往作弦心距 3.見(jiàn)直徑往往作直徑上的圓周角 4.切點(diǎn)圓心莫忘連 5.兩圓相切公切線(連心線) 6.兩圓相交公共弦 十一、應(yīng)用舉例(略) 神的日記627 2009-06-18 09:48:50 123.11.162.* 常見(jiàn)的初中數(shù)學(xué)公式 1 過(guò)兩點(diǎn)有且只有一條直線 2 兩點(diǎn)之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8 如果兩條直線都和第

16、三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯(cuò)角相等,兩直線平行 11 同旁內(nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯(cuò)角相等 14 兩直線平行,同旁內(nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩

17、個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

18、 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30那么它所對(duì)的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41 線段的

19、垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形 43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上 45逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2 ,那么這個(gè)三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360 49四邊形的外

20、角和等于360 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)180 51推論 任意多邊的外角和等于360 52平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分 56平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角

21、 61矩形性質(zhì)定理2 矩形的對(duì)角線相等 62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63矩形判定定理2 對(duì)角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角 66菱形面積=對(duì)角線乘積的一半,即S=(ab)2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72定理

22、2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分 73逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75等腰梯形的兩條對(duì)角線相等 76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77對(duì)角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80 推論2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第 三邊 81 三角形中

23、位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)2 S=Lh 83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性質(zhì) 如果ab=cd,那么(ab)b=(cd)d 85 (3)等比性質(zhì) 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng) 線段成比例 87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例 88 定理 如

24、果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA) 92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93 判定定理2 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS) 94 判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS) 95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與

25、另一個(gè)直角三 角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似 96 性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平 分線的比都等于相似比 97 性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比 98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方 99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值 101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合 102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104同圓或等圓的半徑

26、相等 105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半 徑的圓 106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直 平分線 107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距 離相等的一條直線 109定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧 平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112推論2 圓

27、的兩條平行弦所夾的弧相等 113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形 114定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等 116定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118推論2 半圓(或直徑)所對(duì)的圓周角是直角;90的圓周角所 對(duì)的弦是直徑 119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120定理 圓的內(nèi)接

28、四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角 121直線L和O相交 dr 直線L和O相切 d=r 直線L和O相離 dr 122切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑 124推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 125推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心 126切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對(duì)邊的和相等 128弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角 129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角

29、也相等 130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積 相等 131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項(xiàng) 132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割 線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng) 133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等 134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135兩圓外離 dR+r 兩圓外切 d=R+r 兩圓相交 R-rdR+r(Rr) 兩圓內(nèi)切 d=R-r(Rr) 兩圓內(nèi)含dR-r(Rr) 136定理 相交兩圓的連心線垂直平分兩圓的公共弦 137定理 把圓分成n(n3)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論