
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、20192020學(xué)年高三6月質(zhì)量檢測(cè)鞏固卷數(shù)學(xué)(文科)一、選擇題1. 已知集合,則( )a. b. c. d. 【答案】d【解析】【分析】先解出集合a,根據(jù)交集定義計(jì)算即可.【詳解】由,得,因?yàn)?,所以,因?yàn)椋怨蔬x:d【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查學(xué)生對(duì)基礎(chǔ)知識(shí)的掌握程度,屬基礎(chǔ)題.2. 已知復(fù)數(shù)(為虛數(shù)單位),則( )a. 1b. c. d. 【答案】a【解析】【分析】化簡(jiǎn)可得,代入所求,根據(jù)復(fù)數(shù)求模公式,即可得答案.【詳解】由題意,復(fù)數(shù),所以故選:a【點(diǎn)睛】本題考查復(fù)數(shù)的基本運(yùn)算,考查學(xué)生對(duì)基礎(chǔ)知識(shí)的掌握程度,屬基礎(chǔ)題.3. 在中,點(diǎn)d為邊上一點(diǎn),且d為邊上靠近c(diǎn)的三等分點(diǎn),則(
2、)a. 8b. 6c. 4d. 2【答案】a【解析】【分析】用作為一個(gè)基底,表示向量,然后利用數(shù)量積運(yùn)算求解.【詳解】在中,已知,所以,故選:a【點(diǎn)睛】本題主要考查平面向量基本定理以及數(shù)量積運(yùn)算,還考查了運(yùn)算求解的能力,屬于中檔題.4. 已知,則( )a. b. c. d. 3【答案】c【解析】【分析】利用誘導(dǎo)公式求出,再由兩角差的正切公式可得結(jié)果,詳解】由得,所以故選:c【點(diǎn)睛】本題主要考查誘導(dǎo)公式的應(yīng)用,考查了兩角和的余弦公式,屬于中檔題.5. 已知函數(shù)為奇函數(shù),且,則( )a. b. 7c. 0d. 2【答案】b【解析】【分析】根據(jù)為奇函數(shù),可求得a,b的值,代入所求,即可得結(jié)果.【詳解
3、】當(dāng)時(shí),又是奇函數(shù),所以,所以,所以,所以故選:b【點(diǎn)睛】本題考查奇函數(shù)定義的應(yīng)用,分段函數(shù)求值問題,考查計(jì)算化簡(jiǎn)的能力,屬基礎(chǔ)題.6. 已知實(shí)數(shù),滿足不等式組則目標(biāo)函數(shù)的最大值為( )a. 4b. 5c. 6d. 7【答案】b【解析】【分析】先畫出目標(biāo)函數(shù)的可形域,然后利用截距型線性規(guī)劃問題解決.【詳解】不等式組表示的平面區(qū)域?yàn)閳D中的(包括邊界),由圖知,平移直線,當(dāng)經(jīng)過點(diǎn)時(shí),取得最大值,易得,即故選:b【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問題,難度一般,準(zhǔn)確畫出約束條件的可行域是關(guān)鍵.7. 某幾何體的三視圖如圖所示,圖中小正方形的邊長(zhǎng)為1,則該幾何體的體積為( )a. 24b. 36c. 48d
4、. 56【答案】c【解析】【分析】根據(jù)三視圖,還原出立體圖,并根據(jù)小正方形的個(gè)數(shù),求出底面正方形邊長(zhǎng)以及四棱錐的高,代入體積公式,即可得答案.【詳解】由三視圖知,該幾何體是一個(gè)倒立的正四棱錐,且底面正方形邊長(zhǎng)為6,四棱錐的高為4,如圖所示, 所以該幾何體的體積故選:c【點(diǎn)睛】本題考查由三視圖還原幾何體、椎體體積的求法,考查空間想象能力與計(jì)算能力,屬基礎(chǔ)題.8. 在中,角,的對(duì)邊分別為,成等差數(shù)列,的面積為,那么( )a. b. c. d. 【答案】b【解析】【分析】根據(jù)題意,結(jié)合面積公式,求得;結(jié)合余弦定理,即可求得.【詳解】因?yàn)?,成等差?shù)列,所以因?yàn)榈拿娣e為,所以,所以又,所以,即,所以故選
5、:b【點(diǎn)睛】本題考查利用余弦定理解三角形,涉及三角形面積公式以及等差中項(xiàng)的應(yīng)用,屬綜合基礎(chǔ)題.9. 若函數(shù)在區(qū)間上存在最大值,則實(shí)數(shù)的取值范圍為( )a. b. c. d. 【答案】c【解析】【分析】求得,根據(jù)函數(shù)的最值情況,結(jié)合二次函數(shù)單調(diào)性,即可容易求得參數(shù)范圍.【詳解】因?yàn)?,且函?shù)在區(qū)間上存在最大值,故只需滿足,所以,解得故選:c【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,屬基礎(chǔ)題.10. 已知圓過拋物線的焦點(diǎn),且圓心在此拋物線的準(zhǔn)線上.若圓的圓心不在軸上,且與直線相切,則圓的半徑為( )a. b. c. d. 【答案】d【解析】拋物線y2=4x的焦點(diǎn)為f(1,0),準(zhǔn)線方程為x=1,設(shè)圓c
6、的圓心為c(1,h),則圓c的半徑r=,直線x+y3=0與圓c相切,圓心c到直線的距離d=r,即=,解得h=0(舍)或h=8r=14故選d11. 已知,則下列說法正確的是( )a. 的最小值為b. 的最小值為c. 的最大值為d. 的最大值為【答案】bd【解析】【分析】令,利用換元法將函數(shù)轉(zhuǎn)化為分式函數(shù),即可根據(jù)函數(shù)單調(diào)性求得函數(shù)最值.【詳解】設(shè),由,得,則,又由,得,所以,又因?yàn)楹瘮?shù)和在上單調(diào)遞增,所以在上為增函數(shù),故選:.【點(diǎn)睛】本題考查之間的關(guān)系,涉及利用函數(shù)單調(diào)性求最值,屬綜合基礎(chǔ)題.12. 如圖所示,外層是類似于“甜筒冰淇淋”的圖形,上部分是體積為的半球,下面大圓剛好與高度為的圓錐的底
7、面圓重合,在該封閉的幾何體內(nèi)倒放一個(gè)小圓錐,小圓錐底面平行于外層圓錐的底面,且小圓錐頂點(diǎn)與外層圓錐頂點(diǎn)重合,則該小圓錐體積可以為( )a. b. c. d. 【答案】abc【解析】【分析】根據(jù)半球的體積公式及小圓錐體積的表達(dá)式并結(jié)合導(dǎo)函數(shù)的性質(zhì),求出圓錐最大體積,即可得出結(jié)果.【詳解】解:令上部分的半球半徑為,可得,解得,設(shè)小圓錐底面半徑為,小圓錐底面中心到球心距離為,可知,和可構(gòu)成直角三角形,即,小圓錐體積令,則,可知在上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時(shí),最大,即,即abc三個(gè)選項(xiàng)都滿足題意故選:abc.【點(diǎn)睛】本題考查圓錐體積的問題,結(jié)合導(dǎo)函數(shù)的單調(diào)性的知識(shí),考查分析問題能力,屬于中檔題.
8、二、填空題13. 函數(shù)的圖像在處的切線方程是_【答案】【解析】分析】對(duì)函數(shù)求導(dǎo),求得切線斜率和切點(diǎn)坐標(biāo),利用點(diǎn)斜式可得切線方程.【詳解】,所以,又當(dāng)時(shí),所以切線方程為,故答案為【點(diǎn)睛】本題考查導(dǎo)數(shù)幾何意義,考查利用導(dǎo)數(shù)求函數(shù)在某一點(diǎn)處的切線方程;步驟一般為:一,對(duì)函數(shù)求導(dǎo),代入已知點(diǎn)得到在這一點(diǎn)處的斜率;二,求出這個(gè)點(diǎn)的橫縱坐標(biāo);三,利用點(diǎn)斜式寫出直線方程.14. 設(shè)p:|x1|1,q:x2(2m+1)x+(m1)(m+2)0若p是q的充分不必要條件,則實(shí)數(shù)m的取值范圍是_【答案】0,1【解析】【分析】分別求出的范圍,再根據(jù)是的充分不必要條件,列出不等式組,解不等式組【詳解】由得,得.由,得,
9、得,若p是q的充分不必要條件,則,得,得,即實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題主要考查絕對(duì)值不等式和二次不等式的解法,同時(shí)考查了充分不必要條件,屬于中檔題.15. 如圖,直線平面,垂足為,三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,在平面內(nèi),是直線上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_,點(diǎn)到直線的距離的最大值為_.【答案】 (1). (2). 【解析】【分析】三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點(diǎn)到平面的距離;,可得點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長(zhǎng)
10、為,則中線長(zhǎng)為,點(diǎn)到平面的距離為,點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑.又三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,以下求過和的兩個(gè)平行平面間距離,分別取中點(diǎn),連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,所以到直線最大距離為.故答案為:;.【點(diǎn)睛】本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.16. 已知雙曲線的離心率為,虛軸長(zhǎng)為,為左,右焦點(diǎn),則焦點(diǎn)到漸近線的距離為_;設(shè)點(diǎn)為上一點(diǎn),動(dòng)點(diǎn)為雙曲線左支上一點(diǎn),則的最小值為_【答案】 (1). (2). 【解析】【分析】根據(jù)
11、題意,求得,即可容易求得到漸近線距離;結(jié)合雙曲線定義,即可容易求得的最小值.【詳解】由題意,因?yàn)殡x心率,所以,故,到漸近線的距離為,點(diǎn)在雙曲線的左支上,由雙曲線的定義可知,則故答案:;.【點(diǎn)睛】本題考查雙曲線方程中參數(shù)的計(jì)算,涉及雙曲線上最值問題的求解,涉及雙曲線的定義,屬綜合基礎(chǔ)題.三、解答題(一)必考題17. 在這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并求出問題中的的值已知數(shù)列中,其前項(xiàng)和為,_,若對(duì)任意的,恒成立,求實(shí)數(shù)的最小值【答案】條件選擇見解析,【解析】【分析】分別代入,可解得相同的,代入所求,可得恒成立,設(shè),根據(jù)的單調(diào)性,可求得的最大值,即可得答案.【詳解】若選,當(dāng)時(shí),所以,則;
12、若選,所以,所以是1為首項(xiàng),2為公比的等比數(shù)列,所以,即,則;若選,所以,所以,又,也符合此等式,則通過以上三種方案中的任意一種,得到,則,令,則,所以數(shù)列的前6項(xiàng)單調(diào)遞增,從第7項(xiàng)開始遞減,且最大值,所以【點(diǎn)睛】本題考查已知遞推關(guān)系求數(shù)列前n項(xiàng)和、待定系數(shù)法求數(shù)列的通項(xiàng)、數(shù)列的單調(diào)性的應(yīng)用、恒成立問題,綜合性較強(qiáng),考查分析理解,求值化簡(jiǎn)的能力,屬中檔題.18. 某校2020屆高三數(shù)學(xué)教師為分析本校2019年高考文科數(shù)學(xué)成績(jī),從該校文科生中隨機(jī)抽取400名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),將他們的成績(jī)分成六段,后得到如圖所示的頻率分布直方圖(1)若每組數(shù)據(jù)以該組的中點(diǎn)值作為代表,估計(jì)這400個(gè)學(xué)生數(shù)學(xué)成
13、績(jī)的眾數(shù)和平均數(shù);(2)用分層抽樣的方法,從這400名學(xué)生中抽取20人,再?gòu)乃槿〉?0人中成績(jī)?cè)趦?nèi)的學(xué)生中抽取2人,求這2人至少有一人成績(jī)?cè)趦?nèi)的概率【答案】(1)眾數(shù)的估計(jì)值為115,平均數(shù)的估計(jì)值為;(2)【解析】【分析】(1)根據(jù)頻率分布直方圖,結(jié)合眾數(shù)和平均數(shù)的計(jì)算,即可容易求得結(jié)果;(2)利用分層抽樣求得在各個(gè)區(qū)間抽取的人數(shù),列舉所有抽取的可能,找出滿足題意的可能,用古典概型的概率計(jì)算公式,即可求得結(jié)果.【詳解】(1)眾數(shù)的估計(jì)值為最高矩形對(duì)應(yīng)的成績(jī)區(qū)間的中點(diǎn),即眾數(shù)的估計(jì)值為115,平均數(shù)的估計(jì)值為(2)由頻率分布直方圖可得,成績(jī)?cè)趦?nèi)的人數(shù)為(人),內(nèi)的人數(shù)為(人),內(nèi)的人數(shù)為(人
14、),內(nèi)的人數(shù)為(人),內(nèi)的人數(shù)為(人),內(nèi)的人數(shù)為(人),按分層抽樣方法,抽取20人,則成績(jī)?cè)趦?nèi)的抽1人,在內(nèi)的抽2人,在內(nèi)的抽4人,在內(nèi)的抽6人,在內(nèi)的抽5人,在內(nèi)的抽2人記成績(jī)?cè)趦?nèi)的5人分別為,成績(jī)?cè)趦?nèi)的2人分別為,則從成績(jī)?cè)趦?nèi)的學(xué)生中任取2人的基本事件有,共21種,其中成績(jī)?cè)谥兄辽儆幸蝗说幕臼录?,?1種,所以2人中至少有一人成績(jī)?cè)趦?nèi)的概率【點(diǎn)睛】本題考查由頻率分布直方圖計(jì)算眾數(shù)和平均數(shù),以及古典概型的概率求解,涉及分層抽樣,屬綜合基礎(chǔ)題.19. 如圖所示,在底面為直角梯形的四棱錐中,平面,分別是,的中點(diǎn)(1)證明:;(2)求三棱錐的體積【答案】(1)證明見解析;(2)【解析】【分析
15、】(1)根據(jù)題意先證平面,即可由線面垂直推證線線垂直;(2)轉(zhuǎn)化棱錐的頂點(diǎn)為,根據(jù)平面,結(jié)合體積公式即可求得結(jié)果.【詳解】(1)證明:取線段的中點(diǎn),連接,在中,因?yàn)椋謩e為,的中點(diǎn),所以,因?yàn)?,所以在中,因?yàn)?,分別為,的中點(diǎn),所以,因?yàn)槠矫?,又平面,所以,所以,又,平面,所以平面,因?yàn)槠矫?,所以?)因?yàn)椋?,所以,故,解得,由?)知平面,又/,故可得平面,且故三棱錐的體積【點(diǎn)睛】本題考查通過線面垂直推證線線垂直,涉及用棱錐體積的求解,屬綜合基礎(chǔ)題.20. 已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上,且點(diǎn)到點(diǎn)的最大距離為,點(diǎn)到點(diǎn)的最小距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線交橢圓于、兩點(diǎn),坐標(biāo)原點(diǎn)
16、到直線的距離為,求面積的最大值.【答案】(1);(2).【解析】【分析】(1)根據(jù)題意可得出關(guān)于、的方程組,求出這兩個(gè)量的值,進(jìn)而可得出的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)分兩種情況討論:軸,求得;直線的斜率存在時(shí),設(shè)直線的方程為,設(shè)點(diǎn)、,由直線與圓相切得出,再將直線的方程與橢圓的方程聯(lián)立,利用韋達(dá)定理結(jié)合弦長(zhǎng)公式可求得的最大值,進(jìn)而可求得面積的最大值.【詳解】(1)設(shè)橢圓的焦距為,則,解得,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè)、.當(dāng)軸時(shí),;當(dāng)與軸不垂直時(shí),設(shè)直線的方程為,則,.將代入橢圓方程整理,得,.,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.,因此,面積的最大值為.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了
17、橢圓中三角形面積最值的計(jì)算,涉及韋達(dá)定理設(shè)而不求法以及基本不等式的應(yīng)用,考查計(jì)算能力,屬于中等題.21. 已知函數(shù).(1)求的最值;(2)若時(shí),恒有,求實(shí)數(shù)的取值范圍.【答案】(1)當(dāng)時(shí),最小值為,沒有最大值.當(dāng)時(shí),最大值為,沒有最小值;(2).【解析】【分析】(1)利用的導(dǎo)函數(shù),結(jié)合對(duì)進(jìn)行分類討論,由此求得的最值.(2)利用分離常數(shù)法,結(jié)合導(dǎo)數(shù),求得的取值范圍.【詳解】(1)依題意,所以當(dāng)時(shí),在上遞減,在上遞增,所以在處取得最小值,沒有最大值.當(dāng)時(shí),在上遞增,在上遞減,所以在處取得最大值,沒有最小值.(2)依題意,當(dāng)時(shí),恒有,即,即,即.構(gòu)造函數(shù),所以在上遞增,在上遞減,所以,所以.所以實(shí)數(shù)
18、的取值范圍是.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.(二)選考題選修4-4:坐標(biāo)系與參數(shù)方程22. 在平面直角坐標(biāo)系中,直線的參數(shù)方程為(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;若直線與曲線交于,兩點(diǎn),求【答案】曲線的直角坐標(biāo)方程為,其表示一個(gè)以為圓心,半徑為的圓;【解析】【分析】利用互化公式,可得曲線的直角坐標(biāo)方程;根據(jù)圓的性質(zhì),利用點(diǎn)到直線的距離公式和勾股定理可求得結(jié)果.【詳解】解:因?yàn)?,又,則,所以即曲線的直角坐標(biāo)方程為,其表示一個(gè)以為圓心,半徑為的圓因?yàn)椋?,得由可知,圓心,的半徑為,圓心到直線的距離,所以直線與圓相交,即直線與曲線交于,兩點(diǎn),所以【點(diǎn)睛】本題考查了參數(shù)方程化普通方程,極坐標(biāo)方程化直角坐標(biāo)方程,考查了圓的性質(zhì),點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.選修4-5:不等式選講23. 已知函數(shù)(1)解不等式;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 別墅建設(shè)合同范本
- 勞務(wù)合同補(bǔ)充合同范本
- 發(fā)光字安裝合同范本
- 南京期房購(gòu)房合同范本
- 《野性的呼喚》讀書心得
- 單包工施工合同范例
- 買賣合同范本全文
- 小學(xué)生的英語(yǔ)試卷分析
- 充電寶代理合同范本
- 養(yǎng)殖 聯(lián)營(yíng) 合同范本
- 培訓(xùn)業(yè)務(wù)的競(jìng)爭(zhēng)對(duì)手分析與對(duì)策
- 安全生產(chǎn)個(gè)臺(tái)賬內(nèi)容
- 建設(shè)工程項(xiàng)目-月度安全檢查表
- 硬件設(shè)計(jì)的模塊化
- 學(xué)校食堂食品安全投訴舉報(bào)登記表
- 梁湘潤(rùn).命學(xué)精華
- 六年級(jí)上冊(cè)心理健康課件6《健康上網(wǎng)快樂多》(27張PPT)
- 城市軌道交通工程施工組織設(shè)計(jì)與概預(yù)算PPT全套完整教學(xué)課件
- 全國(guó)青少年機(jī)器人技術(shù)等級(jí)(機(jī)器人二級(jí))考試復(fù)習(xí)題庫(kù)(含真題)
- 學(xué)習(xí)弘揚(yáng)雷鋒精神課件
- 行政區(qū)域代碼表Excel
評(píng)論
0/150
提交評(píng)論