




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、微分方程y二二”滿足初始條件y(0)=0的特解為1.v=hi(l-e2x)-hi2x2 -4x',i.2.3x2 + 4x3x2 4x;3.-? i.一I 02.3.-14.,設(shè)/(2n+1)=4:“則(/加=().1.-2e3+e'2.2e222ef2e 4.ie2I=4(3+2')心=5:J().1.3eT-(2e)x!+C1112+13eJ+(2e)2.r!+c1112 + 14.7:下面反常積分發(fā)散的是().i.高階無窮小2 .等價無窮小3 .低階無窮小4.同階但非等價無窮小1.9:2.3.9'xex+C;設(shè)/(')10:1.-1,O)U(2,3
2、Y0X<15",則函數(shù)/(%)的連續(xù)區(qū)間是2一工4xV2I'().2I'-,.3.O1)UQ24.(一8,0)LsintdtI-lim二=療71XT2A-11:2()12.3.設(shè)函數(shù)/(V)=log2下,則/'(桿)=12:isuit'()ri.1 +笈12.3.7rhi 2r1l-7T-笈In 2 1 1 + 71?rhi24.1 - 7Tjrhi 214:1.3.Y-k ? arctan 丫 * O|T2dx=1+X().r+aictan.Y+C;7c工一aictanx+C;2.x-2aletanx+C;I-liin15:1cl1.2.3.4
3、.21Xcos16:liin工8口X-sillx().1.ao2.二3.4.不存在若/(了)在上=/處可導(dǎo),并且一國)=3,則lim內(nèi)一017:().1.3;3.1.riI - limx->0(1+x18:3.4,19:s+2.v<0設(shè)函數(shù)=<x2+aOvx<l在(-8,+s)內(nèi)連續(xù),則().bx.y>1a2,Z?=3如曲線J1.flar而11-,e32.(33.fl ke4.21:在 工X。處取極大值,則必有(八)二。;八/)二O_i/(to)<O;3.4,一,”I.22:J-=f在點(u)處的切線與丁二儲j二°所圍成的圖形的面積為1. 2.3.
4、1112134.flnr_ .設(shè)/V)為連續(xù)函數(shù),且尸=h /dr,則F(X)二23:x(_-/(lnx) + /(-)*Li. xx x,-/dnx) + /(l)2.-/也i x) - 3 /(-)j, , q3.4./On - /(i)x若/(#在、=/處可導(dǎo),并且1.貝”叫fl24:f® +3/z)-/(x0)1.3-34.-11 2當x-0時,l-cosx是彳的25:2().1.高階無窮小- 2.等價無窮小- 3.低階無窮小- 4.同階但非等價無窮小1設(shè)函數(shù)=+arctanp則尢=1是7(光)的1: x-1()-1.可去間斷點2.跳躍間斷點3.無窮間斷點3.4.必丫<
5、1,若/=p21則J;/(*)dX=_9,1.66129-3.一64.心微分方程)=/的通解為一6.”().1'=ex+C.x2十C.A*+(匚1.123y=ex+Cx2+Cyx+Q2.-y=&+Cx+Cx+*-1ZJ4.v=ex-C.x2+C7x+C*?1ZJ7:設(shè)-Ena+G),則廣()1.XI2.3.(i+x2yXT(i+x7y2.設(shè)f9=9:x2+ax+bx2-l3XH|,在點、=1處連續(xù),則X=Ia=5J)=41.a-5b=4/&a=45Z>=-53.r1.-2e2+e32.3.2e4.ie211:).n,不hi2;1. 42. 12n+=+ln2;3.
6、 -+ihi2;4. 1-12.設(shè)y=/2(x),其中/可微,貝ud.y=()I、/1.dy 2fxdx2.3.4.辦=2/(x)/f(x)cfy- 2/(x) ff(x)dx y = fx)fxydx13:c設(shè)m數(shù)/、0)=_ l-Sill.T-log2 .Y ,則 /'(笈)=().1.c3.11+7T7rhi2111-71-2.ln2,1-1+7T71n2Llnx|;3.-=1h|t|+C;4.V15:limsinM,o,x21.2.4.1COSInn17:sm x(1 :2.1.,3.4.不存在1-m;3x+a,.r<0設(shè)函數(shù)/(1)二Y+l,0<.丫<1在(
7、-氣+s)內(nèi)連續(xù),則-,x>018:ix1二L32a-1,Z>=22.a-.b-23.4.1,6=219:r=0 = L1-0=0的特解為微分方程一12.V+367=。滿足初始條件丫().1.e6x(l+6x)2'dI".3.y = e6x(l+6x)4y=e6x(l-6x)21設(shè)小)='hC"一I1.-12.3.1L4.22:微分方程,+,,+5?=°的通解為().1.y=(C1Cos2x+C2sin2x)2.y=2ex(gcos2x十C?sin2x)3.4.v=2exC.sin2xy1fTd.x=23:I*"()2cl;n
8、",.r-2aictanx+C;3.4.,2:nd;mi'24:dx=().x1+-x-2-Jx+C1. 3x2+-x-2y/x+C2. 、x2+-.r2+x-2y/x+C3. 、4.213Lx1+-x2-x+2y/x+C325:arccota:lim=fx().1。2.1;8,3.-4.不存在設(shè)為/(x)的原函數(shù),則-QI2:-T21.X212.X13.14.T4:.=,v ai'ccos ,v,則")=()._ 01 .一22 . 一pI23. 一14. 2設(shè)lim/(3)存在,且J(x)=x2+2xlimf(x),則liin/(x)=9:1ii(1.
9、一2. 103.10:微分方程+ 2T = 4t的通解為dv=2x+l+Ce-2x1.2.1y = 2x-l + Ce33,2-一3cosl+i0I1cosl-2.3r3.,1cos1+-31cos1一4.一12:一曲線通過點£2),且在該曲線上任一點尸(My)處的切線的斜率»【()1.y=M十1()2.y=,x3-1y=-.r3+l3.4.微分方痛+5vf+6y=6xe2x13:愀刀刀在”"的特解形式().1.工2(亞+6H2.x(ax+b)e2x3.4.14:r1.2.(or+fe)e2x;oxq2x.Z=f1t2(1+sin3aMtJ().14. 315:曲
10、線在點。,1)處的法線方程為().14y-x+33.14y-x+2:飛】、4y=3x+3. ;f+44. 3/(.% + 卜"% 一4)二17:若/(工)在k=/處可導(dǎo),并且/'(/)=3tjuijlim由T。1.3;6,12.3;1I3.4.I20:1ln(l+回-hi22hi(l+V2)-hi2.2111(1+72)+bl23.2hi(l+V2)+hi24.21:當工0時,1cos2x是*的().1 .高階無窮小;2 .等價無窮小3 .低階無窮小4 .同階但非等價無窮小23:已知J/(.x)d.x =xexex +c,則 Jr(x)d 工#2“+C;2.xex+ex+c3
11、.,xex-2ex+c4.處的切線方程為設(shè)曲線方程為二24:().一+-=1,則其在點產(chǎn)。9942:y-i.2.乎二烏243.4.(x-2)-(x-2)3(工一2).xlii+r+C1.xIiia-t+C2.3.i.3.3te”I3.一x&x+C4.pff_41/-Pzz£vp2工6:微分方程y-了一的特解形式().1.x2ax+ 6)e2z;2.x(辦 + b)e"(ar + Z?)e2x;3.dv=4e1+產(chǎn)1.黃二"一小2.一J4,21710是小)的1.可去間斷點2.跳躍間斷點3.無窮間斷點4.振蕩間斷點11 :微分方程y+上二X弋mx二一滿足初始條
12、件X1二1的特解為A一打()7T-C0SX1.2.1-COSTV=X7T+C0SX3.7T-1-C0SX4.12:設(shè)人工J:hixdK,2='11,xd./則()4;1.2.4.無法判斷15:Linx+q*<0果,在則常數(shù)()Xb.1:vsmx,x-Q3.aQb=118:設(shè)產(chǎn),則戶()xsmx(costIn工sinx)i.rnr!_2.sinx.-'w3.(cosxliix-sinrv;x(cos.xlii.y+sinx)1xsinz(cos*ln*+sinx)4.13-25xsmx13ax=19:U/+2/+1().1.02. 13. 24. 3I=vInt(Lt=20
13、:J1.fInt+L/+C42.-x2 hix-x2 +C24xhix+-x2+C3.4.22:曲線在*=0處的法線方程是().y=-x+l1.2V=-X+12.3.y=-.t+1v=+14.(-CO0)4:在,上,下列函數(shù)中無界的是(Y個1.一y=aictan陽2.3.13.1丁+11>'=-4.'6:下列各式不正確的是()1.liinerHT+OO二+002.limaictaiix=JC-KO0o-nolln一liinaictan=4丫 -.9:設(shè)/(A)為連續(xù)函數(shù),且尸出=7必則"T)=2./(hiT)3.1/(-V)X-/(Inv)4.'dv微分
14、方程11:dx的通解是().1.一'2片Ce3.I-Jlsin21dx=12:J口3.72-213:設(shè)J,g)是由方程e.-/=干,所確定的隱函數(shù),則火。)=().11.12.3.15:由.尸小()67r2,£二。所圍成的圖形繞f軸旋轉(zhuǎn)的旋轉(zhuǎn)體積為1.二647r53.3.47r557r4.4.19:,b/(2(1工=0.旦/(工)在«回上連續(xù),則在«J1上()一點'使MO;3.必有唯Y,使/*4”定存寅,使/"設(shè)函數(shù)/(2x)=sin(2),則/(-)=20: 2().1. 12. 103._94. 一設(shè)f(瓜)=COSN,則ff(x)2
15、11.2.x cost32.xcosx23.-.xsin.x4.23.微分方程(1+苔)»'=屋滿足似0)=1的特解為23.1= 2hi(l + ex) + l-21n2V2=111(1+ex)-1-21112.v2=bi(l+er)+1+2B123.4.v221n(l+er)+1+21112lun工tO春os4XCO3"3.4.不存在2:設(shè)?。?出4,則螞一以一1.412.QS3.4一m0設(shè)/(t)=V,則ff(0)=0,T=0,()3.14.1“所確定的隱函數(shù)*3的導(dǎo)數(shù)半由萬程+丫-dxK*7:1.113:由y二丁和工二/所圍成的平面圖形的面積為()14:115
16、 y = x111(工+ 1)的單調(diào)增加區(qū)間為()I(1一YYI-Em-一1十工),o)(0、+s)4.(CO,+8)18:liin=E下十smT(1.02.1OO4.不存在3./=p.TSill.vdv=21:Jo()11.-12.174.arccotxlim25:"X().1.0;2. 1;3. %:4.不存在2.L-1+。;63.ld+c;633.x6-2x3+C4.4:微分方程-v-costTinrv滿武產(chǎn)的特辯為一y=2e1+sin.v1.v2.2ex-sinxIy-2ex+cosx3.Iv=2ex-cost4.IL()17T+1. 一17T2. 一7T 111若連續(xù)函數(shù)滿
17、足關(guān)系式/Q)=J;/+1,則/(1)=/(x)=2ex/(%)一2/.de.微分方程y=+taii滿足初始條件了=工的特解為13:xx"6()y1sin=-x1 .'飛*yisin=x2 2.r2Vsin=xc3.y1sm=x4.''設(shè)v二.xaiccos則嚴(0)=16:J(1.12. 13. 11I_?4. -r*sinx-.設(shè)/(x)為連續(xù)函數(shù),且F(t)=f/(比則尸二18:、Ji、().-cos.yf(sin<v)1.oCOS#(sinx)2.sinxf(sinx)3.-sinxf(sinx)4.rlii(smx+1)I=Inn24:1口X1
18、1.2.p3.4.122:t +近().7=3(Iti.h5+h】2lii5-lii22.9(1115+In2)3 .-(1115-1112)4 .-16:設(shè)方程e*+tv=e確定了J是'的函數(shù),則.()11;II.1J,-1:-3.1匚4.e12:拋物線丁=2”與該曲線在點處的法線所圍成的圖形。的12)面積為()161.2.3.16T4.8:下列各式不正確的是(1.lim er = +s; 1T+8liinex=qo2.lim/二0:3 .liinex=14 .14:微分方程廣產(chǎn)的通解為1.g*十gy-ex-Cpt+C222.3.一5:4T=Y+Gx+gr.,v>0設(shè)/(%)=
19、(smcix已知存在,則常數(shù)ax->01.2.3.14.218::<y=*aictan',則/(O)1.3.x+2設(shè)/(x)=-(口>0),"一X0且x=0是/(x)的連續(xù)點,宙&a-<x+1+?21n23.4.2x+l+2111214:由y=二o戶二1所圍成的平面圖形繞0X軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積為().17T1. 71n2. 一1-71Q33.20:憶出數(shù)廠二5二叮,:15xln5;2.56x;31.3:1后;4.,ln5.若/0)在¥=,口處可導(dǎo),并且1,則必3.-33.1匚4.-1limlxsini-甕TCO2:3.4.一則/喘尸-()設(shè)函數(shù)f(2x)=cos(2t),10:1.:2.r一3.4.方程承12:v-cos.v-sm,v滿足初始條件M.=1的特解為(1.05.Cex-smx2.v-Cex+cosxcv=Cex+sin.v3.4Ce-cosxlim13:一sinx_1.02.3.OO4.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《輪椅上的霍金》讀書心得體會
- 加工產(chǎn)品采購合同范本
- 參展住宿餐飲合同范本
- 南京水泥采購合同范本
- 亮化合同范本
- 保潔開荒服務(wù)合同范本
- 勞務(wù)合同范本拿
- t書采購合同范本
- 入股控股合同范本
- 合伙買吊車合同范本
- 《急性冠狀動脈綜合征》課件
- 《馬克思生平故事》課件
- 2024-2025學(xué)年四川省成都市高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測英語試題(解析版)
- 《以哪吒精神照亮成長之路》開學(xué)家長會課件
- HRBP工作總結(jié)與計劃
- 八大危險作業(yè)安全培訓(xùn)考試試題及答案
- 2025中國船舶集團限公司招聘高頻重點模擬試卷提升(共500題附帶答案詳解)
- 2025年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025年上半年中電科太力通信科技限公司招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年沙洲職業(yè)工學(xué)院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2024年計算機二級WPS考試題庫(共380題含答案)
評論
0/150
提交評論