版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、排列組合問(wèn)題的解題策略關(guān)鍵詞: 排列組合,解題策略 一、相臨問(wèn)題捆綁法例17名學(xué)生站成一排,甲、乙必須站在一起有多少不同排法?解:兩個(gè)元素排在一起的問(wèn)題可用“捆綁”法解決,先將甲乙二人看作一個(gè)元素與其他五人進(jìn)行排列,并考慮甲乙二人的順序,所以共有 種。評(píng)注:一般地: 個(gè)人站成一排,其中某 個(gè)人相鄰,可用“捆綁”法解決,共有 種排法。二、不相臨問(wèn)題選空插入法例2 7名學(xué)生站成一排,甲乙互不相鄰有多少不同排法?解:甲、乙二人不相鄰的排法一般應(yīng)用“插空”法,所以甲、乙二人不相鄰的排法總數(shù)應(yīng)為: 種 .評(píng)注:若 個(gè)人站成一排,其中 個(gè)人不相鄰,可用“插空”法解決,共有 種排法。三、復(fù)雜問(wèn)題總體排除法在
2、直接法考慮比較難,或分類不清或多種時(shí),可考慮用“排除法”,解決幾何問(wèn)題必須注意幾何圖形本身對(duì)其構(gòu)成元素的限制。例3.(1996年全國(guó)高考題)正六邊形的中心和頂點(diǎn)共7個(gè)點(diǎn),以其中3個(gè)點(diǎn)為頂點(diǎn)的三角形共有多少個(gè).解:從7個(gè)點(diǎn)中取3個(gè)點(diǎn)的取法有 種,但其中正六邊形的對(duì)角線所含的中心和頂點(diǎn)三點(diǎn)共線不能組成三角形,有3條,所以滿足條件的三角形共有 332個(gè).四、特殊元素優(yōu)先考慮法 對(duì)于含有限定條件的排列組合應(yīng)用題,可以考慮優(yōu)先安排特殊位置,然后再考慮其他位置的安排。 例4 (1995年上海高考題) 1名老師和4名獲獎(jiǎng)學(xué)生排成一排照像留念,若老師不排在兩端,則共有不同的排法 種解:先考慮特殊元素(老師)的
3、排法,因老師不排在兩端,故可在中間三個(gè)位置上任選一個(gè)位置,有 種,而其余學(xué)生的排法有 種,所以共有 72種不同的排法.例5(2000年全國(guó)高考題)乒乓球隊(duì)的10名隊(duì)員中有3名主力隊(duì)員,派5名隊(duì)員參加比賽,3名主力隊(duì)員要安排在第一、三、五位置,其余7名隊(duì)員選2名安排在第二、四位置,那么不同的出場(chǎng)安排共有 種.解:由于第一、三、五位置特殊,只能安排主力隊(duì)員,有 種排法,而其余7名隊(duì)員選出2名安排在第二、四位置,有 種排法,所以不同的出場(chǎng)安排共有 252種.五、多元問(wèn)題分類討論法對(duì)于元素多,選取情況多,可按要求進(jìn)行分類討論,最后總計(jì)。例6(2003年北京春招)某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單
4、,開(kāi)演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為(A ) A42 B30 C20 D12解:增加的兩個(gè)新節(jié)目,可分為相臨與不相臨兩種情況:1.不相臨:共有A62種;2.相臨:共有A22A61種。故不同插法的種數(shù)為:A62 +A22A61=42 ,故選A。例7(2003年全國(guó)高考試題)如圖, 一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰地區(qū)不得使用同一顏色,現(xiàn)有4種顏色可供選擇,則不同的著色方法共有多少種?(以數(shù)字作答)解:區(qū)域1與其他四個(gè)區(qū)域相鄰,而其他每個(gè)區(qū)域都與三個(gè)區(qū)域相鄰,因此,可以涂三種或四種顏色 用三種顏色著色有 =24種方法, 用四種顏色著色有
5、=48種方法,從而共有24+48=72種方法,應(yīng)填72.六、混合問(wèn)題先選后排法對(duì)于排列組合的混合應(yīng)用題,可采取先選取元素,后進(jìn)行排列的策略 例8(2002年北京高考)12名同學(xué)分別到三個(gè)不同的路口進(jìn)行車(chē)流量的調(diào)查,若每個(gè)路口4人,則不同的分配方案共有( ) A 種 B 種 C 種 D 種解:本試題屬于均分組問(wèn)題。 則12名同學(xué)均分成3組共有 種方法,分配到三個(gè)不同的路口的不同的分配方案共有: 種,故選A。例9(2003年北京高考試題)從黃瓜、白菜、油菜、扁豆4種蔬菜品種中選出3種,分別種在不同土質(zhì)的三塊土地上,其中黃瓜必須種植,不同的種植方法共有( ) A24種 B18種 C12種 D6種 解
6、:先選后排,分步實(shí)施. 由題意,不同的選法有: C32種,不同的排法有: A31·A22,故不同的種植方法共有A31·C32·A22=12,故應(yīng)選C. 七相同元素分配檔板分隔法例10把10本相同的書(shū)發(fā)給編號(hào)為1、2、3的三個(gè)學(xué)生閱覽室,每個(gè)閱覽室分得的書(shū)的本數(shù)不小于其編號(hào)數(shù),試求不同分法的種數(shù)。請(qǐng)用盡可能多的方法求解,并思考這些方法是否適合更一般的情況?本題考查組合問(wèn)題。解:先讓2、3號(hào)閱覽室依次分得1本書(shū)、2本書(shū);再對(duì)余下的7本書(shū)進(jìn)行分配,保證每個(gè)閱覽室至少得一本書(shū),這相當(dāng)于在7本相同書(shū)之間的6個(gè)“空檔”內(nèi)插入兩個(gè)相同“I”(一般可視為“隔板”)共有 種插法,即
7、有15種分法??傊帕?、組合應(yīng)用題的解題思路可總結(jié)為:排組分清,加乘明確;有序排列,無(wú)序組合;分類為加,分步為乘。具體說(shuō),解排列組合的應(yīng)用題,通常有以下途徑:(1)以元素為主體,即先滿足特殊元素的要求,再考慮其他元素。(2)以位置為主體,即先滿足特殊位置的要求,再考慮其他位置。(3)先不考慮附加條件,計(jì)算出排列或組合數(shù),再減去不合要求的排列組合數(shù)。排列組合問(wèn)題的解題方略湖北省安陸市第二高級(jí)中學(xué) 張征洪排列組合知識(shí),廣泛應(yīng)用于實(shí)際,掌握好排列組合知識(shí),能幫助我們?cè)谏a(chǎn)生活中,解決許多實(shí)際應(yīng)用問(wèn)題。同時(shí)排列組合問(wèn)題歷來(lái)就是一個(gè)老大難的問(wèn)題。因此有必要對(duì)排列組合問(wèn)題的解題規(guī)律和解題方法作一點(diǎn)歸納和
8、總結(jié),以期充分掌握排列組合知識(shí)。首先,談?wù)勁帕薪M合綜合問(wèn)題的一般解題規(guī)律:1)使用“分類計(jì)數(shù)原理”還是“分步計(jì)數(shù)原理”要根據(jù)我們完成某件事時(shí)采取的方式而定,可以分類來(lái)完成這件事時(shí)用“分類計(jì)數(shù)原理”,需要分步來(lái)完成這件事時(shí)就用“分步計(jì)數(shù)原理”;那么,怎樣確定是分類,還是分步驟?“分類”表現(xiàn)為其中任何一類均可獨(dú)立完成所給的事件,而“分步”必須把各步驟均完成才能完成所給事件,所以準(zhǔn)確理解兩個(gè)原理強(qiáng)調(diào)完成一件事情的幾類辦法互不干擾,相互獨(dú)立,彼此間交集為空集,并集為全集,不論哪類辦法都能將事情單獨(dú)完成,分步計(jì)數(shù)原理強(qiáng)調(diào)各步驟缺一不可,需要依次完成所有步驟才能完成這件事,步與步之間互不影響,即前步用什么
9、方法不影響后面的步驟采用的方法。 2)排列與組合定義相近,它們的區(qū)別在于是否與順序有關(guān)。3)復(fù)雜的排列問(wèn)題常常通過(guò)試驗(yàn)、畫(huà) “樹(shù)圖 ”、“框圖”等手段使問(wèn)題直觀化,從而尋求解題途徑,由于結(jié)果的正確性難于檢驗(yàn),因此常常需要用不同的方法求解來(lái)獲得檢驗(yàn)。4)按元素的性質(zhì)進(jìn)行分類,按事件發(fā)生的連續(xù)性進(jìn)行分步是處理排列組合問(wèn)題的基本思想方法,要注意“至少、至多”等限制詞的意義。5)處理排列、組合綜合問(wèn)題,一般思想是先選元素(組合),后排列,按元素的性質(zhì)進(jìn)行“分類”和按事件的過(guò)程“分步”,始終是處理排列、組合問(wèn)題的基本原理和方法,通過(guò)解題訓(xùn)練要注意積累和掌握分類和分步的基本技能,保證每步獨(dú)立,達(dá)到分類標(biāo)準(zhǔn)
10、明確,分步層次清楚,不重不漏。6)在解決排列組合綜合問(wèn)題時(shí),必須深刻理解排列組合的概念,能熟練地對(duì)問(wèn)題進(jìn)行分類,牢記排列數(shù)與組合數(shù)公式與組合數(shù)性質(zhì),容易產(chǎn)生的錯(cuò)誤是重復(fù)和遺漏計(jì)數(shù)??傊鉀Q排列組合問(wèn)題的基本規(guī)律,即:分類相加,分步相乘,排組分清,加乘明確;有序排列,無(wú)序組合;正難則反,間接排除等。其次,我們?cè)谧プ?wèn)題的本質(zhì)特征和規(guī)律,靈活運(yùn)用基本原理和公式進(jìn)行分析解答的同時(shí),還要注意講究一些解題策略和方法技巧,使一些看似復(fù)雜的問(wèn)題迎刃而解。下面介紹幾種常用的解題方法和策略。一特殊元素(位置)的“優(yōu)先安排法”:對(duì)于特殊元素(位置)的排列組合問(wèn)題,一般先考慮特殊,再考慮其他。例1、 用0,2,3
11、,4,5,五個(gè)數(shù)字,組成沒(méi)有重復(fù)數(shù)字的三位數(shù),其中偶數(shù)共有( )。 A 24個(gè) B.30個(gè) C.40個(gè) D.60個(gè)分析由于該三位數(shù)為偶數(shù),故末尾數(shù)字必為偶數(shù),又因?yàn)?不能排首位,故0就是其中的“特殊”元素,應(yīng)該優(yōu)先安排,按0排在末尾和0不排在末尾分兩類:1)0排末尾時(shí),有A42個(gè),2)0不排在末尾時(shí),則有C21 A31A31個(gè),由分?jǐn)?shù)計(jì)數(shù)原理,共有偶數(shù)A42 + C21 A31A31=30個(gè),選B。二總體淘汰法:對(duì)于含否定的問(wèn)題,還可以從總體中把不合要求的除去。如例1中,也可用此法解答:五個(gè)數(shù)字組成三位數(shù)的全排列有A53個(gè),排好后發(fā)現(xiàn)0不能排首位,而且數(shù)字3,5也不能排末位,這兩種排法要排除,
12、故有A53-3A42+ C21A31=30個(gè)偶數(shù)。三合理分類與準(zhǔn)確分步含有約束條件的排列組合問(wèn)題,按元素的性質(zhì)進(jìn)行分類,按事情發(fā)生的連續(xù)過(guò)程分步,做到分類標(biāo)準(zhǔn)明確,分步層次清楚,不重不漏。四相鄰問(wèn)題用捆綁法:在解決對(duì)于某幾個(gè)元素要求相鄰的問(wèn)題時(shí),先整體考慮,將相鄰的元素“捆綁”起來(lái),看作一“大”元素與其余元素排列,然后再考慮大元素內(nèi)部各元素間順序的解題策略就是捆綁法例2、有8本不同的書(shū);其中數(shù)學(xué)書(shū)3本,外語(yǔ)書(shū)2本,其它學(xué)科書(shū)3本若將這些書(shū)排成一列放在書(shū)架上,讓數(shù)學(xué)書(shū)排在一起,外語(yǔ)書(shū)也恰好排在一起的排法共有( )種(結(jié)果用數(shù)值表示) 解:把3本數(shù)學(xué)書(shū)“捆綁”在一起看成一本大書(shū),2本外語(yǔ)書(shū)也“捆綁
13、”在一起看成一本大書(shū),與其它3本書(shū)一起看作5個(gè)元素,共有A55種排法;又3本數(shù)學(xué)書(shū)有A33種排法,2本外語(yǔ)書(shū)有A22種排法;根據(jù)分步計(jì)數(shù)原理共有排法A55 A33 A22=1440(種).注:運(yùn)用捆綁法解決排列組合問(wèn)題時(shí),一定要注意“捆綁”起來(lái)的大元素內(nèi)部的順序問(wèn)題五不相鄰問(wèn)題用“插空法”:不相鄰問(wèn)題是指要求某些元素不能相鄰,由其它元素將它們隔開(kāi)解決此類問(wèn)題可以先將其它元素排好,再將所指定的不相鄰的元素插入到它們的間隙及兩端位置,故稱插空法例3、用1、2、3、4、5、6、7、8組成沒(méi)有重復(fù)數(shù)字的八位數(shù),要求1與2相鄰,2與4相鄰,5與6相鄰,而7與8不相鄰。這樣的八位數(shù)共有( )個(gè)(用數(shù)字作答
14、)解:由于要求1與2相鄰,2與4相鄰,可將1、2、4這三個(gè)數(shù)字捆綁在一起形成一個(gè)大元素,這個(gè)大元素的內(nèi)部中間只能排2,兩邊排1和4,因此大元素內(nèi)部共有A22種排法,再把5與6也捆綁成一個(gè)大元素,其內(nèi)部也有A22種排法,與數(shù)字3共計(jì)三個(gè)元素,先將這三個(gè)元素排好,共有A33種排法,再?gòu)那懊媾藕玫娜齻€(gè)元素形成的間隙及兩端共四個(gè)位置中任選兩個(gè),把要求不相鄰的數(shù)字7和8插入即可,共有A42種插法,所以符合條件的八位數(shù)共有A22 A22 A33 A42288(種) 注:運(yùn)用“插空法”解決不相鄰問(wèn)題時(shí),要注意欲插入的位置是否包含兩端位置六順序固定用“除法”:對(duì)于某幾個(gè)元素按一定的順序排列問(wèn)題,可先把這幾個(gè)元
15、素與其他元素一同進(jìn)行全排列,然后用總的排列數(shù)除于這幾個(gè)元素的全排列數(shù)。例4、6個(gè)人排隊(duì),甲、乙、丙三人按“甲-乙-丙”順序排的排隊(duì)方法有多少種?分析:不考慮附加條件,排隊(duì)方法有A66種,而其中甲、乙、丙的A33種排法中只有一種符合條件。故符合條件的排法有A66 ÷A33 =120種。(或A63種)例5、4個(gè)男生和3個(gè)女生,高矮不相等,現(xiàn)在將他們排成一行,要求從左到右女生從矮到高排列,有多少種排法。解:先在7個(gè)位置中任取4個(gè)給男生,有A74 種排法,余下的3個(gè)位置給女生,只有一種排法,故有A74 種排法。(也可以是A77 ÷A33種)七分排問(wèn)題用“直排法”:把幾個(gè)元素排成若干
16、排的問(wèn)題,可采用統(tǒng)一排成一排的排法來(lái)處理。例6、7個(gè)人坐兩排座位,第一排3個(gè)人,第二排坐4個(gè)人,則不同的坐法有多少種?分析:7個(gè)人可以在前兩排隨意就坐,再無(wú)其它條件,故兩排可看作一排來(lái)處理,不同的坐法共有A77種。八逐個(gè)試驗(yàn)法:題中附加條件增多,直接解決困難時(shí),用試驗(yàn)逐步尋找規(guī)律。例7.將數(shù)字1,2,3,4填入標(biāo)號(hào)為1,2,3,4的方格中,每方格填1個(gè),方格標(biāo)號(hào)與所填數(shù)字均不相同的填法種數(shù)有( )A6 B.9 C.11 D.23解:第一方格內(nèi)可填2或3或4,如第一填2,則第二方格可填1或3或4,若第二方格內(nèi)填1,則后兩方格只有一種方法;若第二方格填3或4,后兩方格也只有一種填法。一共有9種填法
17、,故選B九、構(gòu)造模型 “隔板法”對(duì)于較復(fù)雜的排列問(wèn)題,可通過(guò)設(shè)計(jì)另一情景,構(gòu)造一個(gè)隔板模型來(lái)解決問(wèn)題。例8、方程a+b+c+d=12有多少組正整數(shù)解?分析:建立隔板模型:將12個(gè)完全相同的球排成一列,在它們之間形成的11個(gè)間隙中任意插入3塊隔板,把球分成4堆,每一種分法所得4堆球的各堆球的數(shù)目,對(duì)應(yīng)為a、b、c、d的一組正整解,故原方程的正整數(shù)解的組數(shù)共有C113 .又如方程a+b+c+d=12非負(fù)整數(shù)解的個(gè)數(shù),可用此法解。十.正難則反排除法對(duì)于含“至多”或“至少”的排列組合問(wèn)題,若直接解答多需進(jìn)行復(fù)雜討論,可以考慮“總體去雜”,即將總體中不符合條件的排列或組合刪除掉,從而計(jì)算出符合條件的排列
18、組合數(shù)的方法例9、從4臺(tái)甲型和5臺(tái)乙型電視機(jī)中任意取出3臺(tái),其中至少要甲型與乙型電視機(jī)各一臺(tái),則不同的取法共有( )種 A140種 B80種 C70種 D35種解:在被取出的3臺(tái)中,不含甲型或不合乙型的抽取方法均不合題意,因此符合題意的抽取方法有C93-C43-C53=70(種),故選C 注:這種方法適用于反面的情況明確且易于計(jì)算的習(xí)題十一逐步探索法:對(duì)于情況復(fù)雜,不易發(fā)現(xiàn)其規(guī)律的問(wèn)題需要認(rèn)真分析,探索出其規(guī)律例10、從1到100的自然數(shù)中,每次取出不同的兩個(gè)數(shù),使它們的和大于100,則不同的取法種數(shù)有多少種。解:兩個(gè)數(shù)相加中以較小的數(shù)為被加數(shù),1+100>100,1為被加數(shù)時(shí)有1種,2為被加數(shù)有2種,49為被加數(shù)的有49種,50為被加數(shù)的有50種,但51為被加數(shù)有49種,52為被加數(shù)有48種,99為被捕加數(shù)的只有1種,故不同的取法有(1+2+3+50)+
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 制造業(yè)數(shù)字化改造合同(2篇)
- 2024年度天津市公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師自我提分評(píng)估(附答案)
- 2024年度四川省公共營(yíng)養(yǎng)師之四級(jí)營(yíng)養(yǎng)師??碱A(yù)測(cè)題庫(kù)(奪冠系列)
- 生態(tài)養(yǎng)老休閑度假區(qū)新建項(xiàng)目可行性方案研究報(bào)告
- 2025上海市農(nóng)作物種苗買(mǎi)賣(mài)合同模板
- 中國(guó)利樂(lè)枕項(xiàng)目投資可行性研究報(bào)告
- 五層瓦楞紙項(xiàng)目可行性研究報(bào)告
- 2025年中國(guó)信插行業(yè)發(fā)展前景預(yù)測(cè)及投資戰(zhàn)略研究報(bào)告
- 2025年中國(guó)貴州旅游行業(yè)發(fā)展運(yùn)行現(xiàn)狀及投資戰(zhàn)略規(guī)劃報(bào)告
- 2025年胃膜素項(xiàng)目可行性研究報(bào)告
- 河北省唐山地區(qū)2023-2024學(xué)年上學(xué)期期末八年級(jí)歷史試卷
- 專題06直線與圓的位置關(guān)系、圓與圓的位置關(guān)系(課時(shí)訓(xùn)練)原卷版
- 軍用裝備信息化融合與互聯(lián)
- 人才培養(yǎng)與團(tuán)隊(duì)建設(shè)計(jì)劃三篇
- 2024年急性胰腺炎急診診治專家共識(shí)解讀課件
- 六年級(jí)地方課程教案
- 【寒假預(yù)習(xí)】部編版二年級(jí)語(yǔ)文下冊(cè)生字練字帖(帶拼音、筆順)
- 信息技術(shù)-計(jì)算機(jī)第三方支付行業(yè)深度報(bào)告:監(jiān)管加速第三方支付合規(guī)及出清提費(fèi)利潤(rùn)彈性巨大
- 2024年紀(jì)檢監(jiān)察綜合業(yè)務(wù)知識(shí)題庫(kù)【黃金題型】
- 年終培訓(xùn)機(jī)構(gòu)述職報(bào)告
- 外科手術(shù)備皮范圍
評(píng)論
0/150
提交評(píng)論