浙教版八年級數(shù)學上冊.3證明同步練習_第1頁
浙教版八年級數(shù)學上冊.3證明同步練習_第2頁
浙教版八年級數(shù)學上冊.3證明同步練習_第3頁
浙教版八年級數(shù)學上冊.3證明同步練習_第4頁
浙教版八年級數(shù)學上冊.3證明同步練習_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、奮斗沒有終點任何時候都是一個起點1.3證明同步練習一.選擇題(共15小題)1. (2015秋?鄂州校級月考)如圖游戲:人從格外只能進入第1格,在格中,每次可向前跳 1格或2格,那么人從格外跳到第 6格可以有()種方法.A. 6B. 7C. 8D. 92. (2016?湖州)如圖,AB/ CD BP和CP分別平分/ ABC和/ DCB AD過點 巳 且與AB垂直.若AD=&則點P到BC的距離是()A. 8B. 6C. 4D. 23. (2016?銅仁市)如圖,已知/ AOB=30 , P是/ AO評分線上一點, CP/ OB交OA于點C, PDXOB,垂足為點D,且PC=4則PD等于()

2、A. 1B. 2C. 4 D. 84. (2016?懷化)如圖,OP為/AOB的角平分線,PC1OA PD±OB垂足分別是 C、D,則下列結(jié)論錯誤的是()A. PC=PD B. / CPDW DOP C. / CPOW DPO D. OC=OD信達5. (2016?棗莊)如圖,在 ABC中,AB=AC / A=30° , E為BC延長線上一點,/ ABC與/ ACE的平ADXBC EA. 15° B , 17.5 °C, 20° D, 22.5 °6. (2016?廈門校級模擬)如圖,OP是/ AOB的平分線,點一點,則線段PN的取值

3、范圍為()A. PN< 3B. PN>3C. PN> 3D. PN< 37. (2016?惠安縣二模)已知 RtABC中,/ C=90° , AC=3距離是()JA. 3 B. 2C.巫 D. MH.2138. 如圖,AB/ CD AC1 BC,圖中與/ CAB互余的角有(ABy=C0A. 1個B. 2個C. 3個D. 0個9. (2010?肇慶)如圖所示,已知 AB/ CD Z A=50° , / C=P到OA的距離為3,點N是OB上的任意BC=4, AD平分/ BAC 則點B到AD的):/ E.則/ C等于()分線相交于點D,則/ D的度數(shù)為()

4、10. (2011春?吉安期末)如圖, ABCD思封閉折線,則/ A+/ B+Z C+/ D+/ E為()度.A. 180 B. 270 C. 360 D. 54011. (2012春?九江期末)如圖,4ABC中,CDL BC于C, D點在 AB的延長線上,則CD是 ABC()C. AC邊上的高D.以上都不對12. 如圖,在 ABC中,D為AC的中點,E, F為AB上的兩點,且 AE=BF】AB,則 &def: Saab等于4A. 1: 3 B.1:4 C.1:6 D.2: 713. (2016?蘇州)如圖,在四邊形 ABCD43, / ABC=90 , AB=BC=22, E、F 分

5、別是 AD. CD的中點,連接BE、BF、EF.若四邊形 ABCD勺面積為6,則 BEF的面積為()C.A. 2B/D. 314. (2016?鹽城)A. 5B. 6C. 7D. 8若a、b、c為 ABC的三邊長,且滿足|a 一 4|+'+=0,則c的值可以為(15. (2015?東西湖區(qū)校級模擬)如圖,/EOF內(nèi)有一定點 巳 過點P的一條直線分別交射線 OE于A,射線OF于B.當滿足下列哪個條件時, AOB的面積一定最?。ˋ. OA=OB B. OP為 AOB的角平分線C. OP為AOB勺高 D. OP為4AOB的中線.填空題(共1小題),將紙片的一角折疊,使點 C落16. (200

6、6?煙臺)如圖,三角形紙片 ABC中,/ A=65° , / B=75°度.在4ABC內(nèi),若/ 1=20° ,則/ 2的度數(shù)為三.解答題(共14小題)17. (2015春?邢臺校級期末)如圖,已知 AB/ CD / B=120° , / C=25° ,求/ E.,418. (2014春?南京期末)看圖填空:已知:如圖,AD! BC于D,EF± BC于F,交AB于G,交CA延長線于E,/1 = /2.求證:AD平分/BAC證明:. AD)± BC, EF± BC (已知)./ADC=90 , / EFC=90 (垂線

7、的定義)AD平分/ BAC (角平分線定義)填空:1 = 72 (已知)ABC中,AE是中線,AD是角平分線,AF是高,BE=2, AF=3,(1)BE=1 為一(2)/ BAD=(3)/ AFB=(4)Sa ae(=/ E+/ F.A, B, C, D, E, F構(gòu)成一個封閉折線圖形.求:/ A+Z B+Z C+Z D+D21 .如圖所示.平面上六個點 A, B, C, D, F構(gòu)成一個封閉折線圖形.求/ A+Z B+ZC+Z D+Z E+Z F.22 .如圖所示,AB, CD相交于點E, CF, BF分別為/ ACD/ ABD的平分線且相交于點 F,求證:/ A+Z D).FOE D23

8、. (2016春?高密市期末)如圖,4ABC中,AD是高,AE BF是角平分線,它們相交于點 O, / CAB=50 ,/ C=60° ,求/ DA訝口 / BOA勺度數(shù).24 . (2016春?故城縣期末)如圖,在 ABC中,AD)± BC, AE平分/ BAC / B=70° ,(1) / BAE的度數(shù);(2) / DAE的度數(shù);(3)探究:小明認為如果條件/B=70° , / C=30°改成/ B- / C=40° ,也能得出/25. (2016春?淮安期中)在4ABC中,CDL AB于D, CE是/ ACB的平分線,/ A=2

9、0° , / BCD / ECD勺度數(shù).C=30° .求:DAE的度數(shù)?26. (2016春?江蘇月考)我們知道,任何一個三角形的三條內(nèi)角平分線相交于一點,如圖,的三條內(nèi)角平分線相交于點I ,過I作DEL AI分別交AR AC于點D、E.(1)請你通過畫圖、度量,填寫右上表(圖畫在草稿紙上,并盡量畫準確)(2)從上表中你發(fā)現(xiàn)了/ BIC與/ BDI之間有何數(shù)量關系,請寫出來,并說明其中的道理.若 ABC/ BAC的度數(shù)40°60°90°120°/ BIC 的度數(shù)/ BDI 的度數(shù)若能,請你寫出求解過程;若不能,請說明理由.27. (2

10、015秋?全椒縣期中)已知 ABC中,/ ACB=90 , CD為AB邊上的高,BE平分/ ABC分另交CD AC于點 F、E,求證:/ CFE=/ CEF.28. (2015秋?泰興市校級期中)(1)如圖(1),已知,在 ABC中,AD, AE分別是 ABC的高和角平分線,若/ B=30° , / C=50° .求/ DAE的度數(shù);(2)如圖(2),已知AF平分/ BAC交邊BC于點E,過F作FD± BC若/ B=x , / C= (x+36) ° , / CAE= (含x的代數(shù)式表示)求/ F的度數(shù).29. (2013春?唐山期末)ABC中,AD&#

11、177;BC, AE平分/ BAC交 BC于點 E.(1) / B=30° , / C=70° ,求/ EAD的大小.(2)若/ BV/C,則2/EAD與Z C- / B是否相等?若相等,請說明理由.1.3證明同步練習參考答案與試題解析一.選擇題(共15小題)1. (2015秋?鄂州校級月考)如圖游戲:人從格外只能進入第1格,在格中,每次可向前跳 1格或2格,那么人從格外跳到第 6格可以有()種方法.A. 6B. 7C. 8D. 9【解答】解:每次向前跳l格,有唯一的跳法;僅有一次跳2格,其余每次向前跳l格,有4種的跳法;有兩次跳2格,其余每次向前跳l格,有3種的跳法.則共

12、有1+4+3=8種.故選:C.2. (2016?湖州)如圖,AB/ CD BP和CP分別平分/ ABC和/ DCB AD過點 巳 且與AB垂直.若AD=&則點P到BC的距離是()A. 8B. 6C. 4D. 2【解答】 解:過點P作P已BC于E, AB/ CD PAL AB, PDL CD.BP和CP分另1J平分/ ABC和/ DCBPA=PE PD=PEPE=PA=PD. PA+PD=AD= 8PA=PD=4PE=4.故選C.PDX3. (2016?銅仁市)如圖,已知/ AOB=30 , P是/ AO評分線上一點, CPII OB交OA于點OB垂足為點D,且PC=4則PD等于()A.

13、 1B. 2 C. 4 D. 8【解答】 解:作PE± OA于E,如圖, CP/ OB/ ECP=Z AOB=30 ,在 RHEPC中,PE=kpc=J-X4=2,22 . P 是/ AOBF分線上一點, PE1 OA PD± OB,PD=PE=2故選B.4. (2016?懷化)如圖,OP為/AOB的角平分線,Pd OA PD)± OB垂足分別是 C、D,則下列結(jié)論錯誤的是()A. PC=PD B. / CPDW DOP C. / CPOW DPO D. OC=OD【解答】 解:OP為/ AOB的角平分線,PCX OA PD± OB垂足分別是 C、D,P

14、C=PD 故 A 正確; 在RHOC叫RSOD叫(PC=PD.OC國 AODP/CPOW DPO OC=OD 故 C、D 正確.不能得出/ CPDW DOP故B錯誤.故選B.5. (2016?棗莊)如圖,在 ABC中,AB=AC / A=30° , E為BC延長線上一點,/ ABC與/ ACE的平分線相交于點D,則/ D的度數(shù)為()A. 15° B , 17.5 °C. 20° D, 22.5 °【解答】 解:.一/ ABC的平分線與/ ACE的平分線交于點 D,1 = 7 2, / 3=74, / ACE玄 A+/ ABG即/ 1 + /2=

15、/3+/4+/A, .2/ 1=2/3+/A, / 1 = Z3+ZD,./D=L/A=LX 30° =1522故選A.6. (2016?廈門校級模擬)如圖,OP是/ AOB的平分線,點P至IJOA的距離為3,點N是OB上的任意一點,則線段PN的取值范圍為()A. PN< 3B. PN>3C. PN> 3D. PN< 3【解答】解:作PMLOW M. OP是 / AOB勺平分線,PE± OA PM! OBPM=PE=3PN> 3,故選:C.7. (2016?惠安縣二模)已知 RtABC中,/ C=90° , AC=3, BC=4, A

16、葉分/ BAC 貝U點 B至U AD的距離是()A. B. 2 C.匚 D 卜 ', 一 213【解答】 解:過點D作DH AB交AB于E,/ 0=90° , AC=3 BC=4 AB=一 一二5, 設 CD=x 貝U BD=8- x,. AD平分/ BAG.01=國,即 一=_|且,BD AB 4 - k 5解得,x= 2GD=-,2 Saab x AB?DE=L x-z-x 5匚二,2224, AD=/AC2+CD2=P ?設BD至ij AD的距離是h,SaabX AD?h,2h= . !.故選:C.B8.如圖,AB/ CD AC! BC,圖中與/ CAB互余的角有()A

17、. 1個B. 2個C. 3個D. 0個【解答】 解:= AB/ CD / CBA土 BCD ACL BC, ./ACB=90 , / CAB叱 CBA=90 , / CAB-+Z BCD=90 ,即圖中與/ CAB互余的角有/ CB解口/ BCM個.故選B.C等于()9. (2010?肇慶)如圖所示,已知 AB/ CD Z A=50° , / C=Z E.A. 20° B, 25° C. 30° D , 40°【解答】 解:AB/ CD / A=50° , ./A=/AOC(內(nèi)錯角相等),又C=Z E, / AO比外角,./C=50&

18、#176; +2=25°10. (2011春?吉安期末)如圖, ABCD思封閉折線,則/ A+/ B+Z C+/ D+/ E為A. 180 B. 270 C. 360 D. 540【解答】解:連接AC.根據(jù)三角形的內(nèi)角和定理,得/ D+Z E=/ CAE吆 ACD/ A+Z B+Z C+Z D+Z E=/ B+Z BAC+Z ACB=180故選A.CD 是 ABC()A. BC邊上的高B. AB邊上的高C. AC邊上的高Sk DEF: SaABcHfF11. (2012春?九江期末)如圖,4ABC中,CDL BC于C, D點在 AB的延長線上,則D.以上都不對【解答】 解:CD是BC

19、D43 BC邊上的高,而不是 ABC的高.故選D.12. 如圖,在 ABC中,D為AC的中點,E, F為AB上的兩點,且 AE=BF&AB,4( )A. 1:3 B.1:4 C.1:6 D.2: 7【解答】解:分別過點C、D作CGL AB, DKa AB,垂足分別為 G K, ae=bf=Lab,4FKAB.2D為AC的中點, DKjCG2s ,心.當而加緊依 Sa def: Sa ab=1: 4 .|AECG A&fCG ab+cg故選B.CD的中點,13. (2016?蘇州)如圖,在四邊形 ABCD43, / ABC=90 , AB=BC=2S, E、F 分別是連接BE、B

20、F、EF.若四邊形 ABC而面積為6,則 BEF的面積為()【解答】解:連接AC,過B作EF的垂線交AC于點G,交EF于點H,奮斗沒有終點任何時候都是一個起點故選C./ABC=90 , AB=BC=嗎,-'-AC= , : ' l: ' " - ' 二-1二4 ABC為等腰三角形,BFU AC.ABG BCG為等腰直角三角形,AG=BG=2Saabc=?AB?AC-X 2&X 2舊=4,- Sa ad(=2,.,一卜=2, SA1CD GH二 BG二,42BH二U2又 EF,AC=2, 2 Sa bef=?EF?B 214. (2016?鹽城)

21、若a、b、c為ABC的三邊長,且滿足|a - 4|+JpTj=0,則c的值可以為()A. 5 B. 6C. 7D. 8【解答】解:,一|a 4|+J. 2=0,. .a4=0, a=4; b- 2=0, b=2;則 4- 2<c<4+2,2<c<6, 5符合條件;故選A.15. (2015?東西湖區(qū)校級模擬)如圖,/EOF內(nèi)有一定點 巳 過點P的一條直線分別交射線 OE于A,射線OF于B.當滿足下列哪個條件時, AOB的面積一定最小()信達A. OA=OB B. OP為 AOB的角平分線C. OP為AOB勺高D. OP為4AOB的中線【解答】 解:當點P是AB的中點時S

22、aaobM??;如圖,過點 P的另一條直線 CD交OE OF于點C、D,設PD< PC,過點A作AG/ OF交CD G,在 APG和 BPD中,ZGAP=ZPBBAP=BP ,ZAPG=ZEPB. AP® BPD (ASA ,S 四邊形 AOD=SaAOB- S 四邊形 aod& Sa codSa aob< Sa cod 當點P是AB的中點時SaaobM小;二.填空題(共1小題)16. (2006?煙臺)如圖,三角形紙片 ABC中,/ A=65° , / B=75° ,將紙片的一角折疊,使點C落在 ABC內(nèi),若/ 1=20° ,則/ 2

23、的度數(shù)為60 度.B【解答】解:/ A=65° , / B=75° ,.Z 0=180° - (65° +75° ) =40 度, ./CDE吆 CED=180 - Z 0=140° , / 2=360° - (/ A+Z B+Z 1 + /CED吆 CDE =360° 故填60.BD三.解答題(共14小題)17. (2015春?開B臺校級期末)如圖,已知 AB/ CD /二C D【解答】 解:過點E作EF/ AB,如圖所示. EF/ AB,.Z B+Z BEF=180° ,又. / B=120°

24、; ,-300° =60 度.B=120° , / C=25° ,求/ E./ BEF=60° EF/ AB/ CD/ CEF=Z C=25° , ./ E=Z BEF吆 CEF=8518. (2014春?南京期末)看圖填空:已知:如圖,AD± BC于D,EF± BC于F,交AB于G,交CA延長線于E,/ 1 = 72.求證:AD平分/BAC證明:AD± BC, EF± BC (已知)./ADC=90 , / EFC=90 (垂線的定義)ZADC = A EFCAD / EF ./ 1= / BAD/ 2

25、= / CAD1 = /2 (已知) / BAD4 CADAD平分/ BAC (角平分線定義)【解答】 證明:AD± BC, EF± BC, / ADCN EFC=90 , .AD/ EF (同位角相等,兩直線平行)1 = /BAD(兩直線平行,內(nèi)錯角相等)/2=/DAC (兩直線平行,同位角相等)1 = 72 (已知), / BAD叱DAC(等量代換), AD平分/ BAC故答案為:/ ADC / EFC, AD, EF, / BAD / CAD / BADW CAD19. (2014秋?劍川縣期末)如圖,在 ABC中,AE是中線,AD是角平分線,AF是高,BE=2, A

26、F=3,填空:(1) BE= CE J BC .2 / BAD= / DAC / BAC2(3) / AFB= /AFC =90°.(4) Saae(= 3.be=ce=bc.2故答案為:CE BC;(2) .AD是角平分線,/ BAD=Z DAC=-/ BAC2故答案為:/ DAC / BAC(3) .AF是高,./AFB=/ AFC=90 .故答案為:/ AFG 90° ;(4) .AE是中線,AF是高,BE=2 AF=3,be=ce=2 SA AEC=CE?AFX 2X 3=3.22故答案為:3.20.如圖所示.平面上六個點 A, B, C, D, E, F構(gòu)成一個封

27、閉折線圖形.求:/ A+Z B+Z C+Z D+/ E+Z F.C【解答】 解:分析所求的六個角分布在三個三角形中,但需減去頂點位于由圖形結(jié)構(gòu)不難看出,這三個內(nèi)角可以集中到PQRK在 PAB, RCD QEF中,Z A+Z B+/APB=180 ,/ C+Z D+Z CRD=180 ,/ E+Z F+Z EQF=180 ,又在 PQR中 / QPR+PRQ吆 PQR=180 ,又/ APB=/ QPR / CRD= PRQ/ EQFW PQR(對頂角相等),+-得,/ A+Z B+Z C+Z D+Z E+Z F=360° .P, Q, R處的三個內(nèi)角,21.如圖所示.平面上六個點 A

28、, B, C, D, F構(gòu)成一個封閉折線圖形.求/ A+Z B+ZC+Z D+Z E+Z F.【解答】 解:1 = /A+/E, /2=/B+/C,/ A+Z B+Z C+Z D+Z E+Z F = Z1 + Z2+ZD=180°22. 如圖所示,AR CD相交于點E, CF, BF分別為/ ACD/ ABD的平分線且相交于點 F,求證:/F=(/ A+Z D).【解答】解:如圖所示:.CR BF分另I是/ ACD / ABD的平分線,1 = 7 2, / 3=74,在AMCAFIMB中,/ A+/ 1 = /3+/F,在4AEC和4DEB中,Z A+Z 1 + Z2=Z 3+Z4+

29、Z D,即/ A+2/ 1=2/ 3+Z %由X 2 得,/ A=2/F / D,即 2/ F=Z A+Z D,./ F= y (/ A+Z D).O23. (2016春?高密市期末)如圖,4ABC中,AD是高,AE BF是角平分線,它們相交于點 0, / CAB=50 ,/ C=60° ,求/ DA訝口 / B0A勺度數(shù).【解答】解:/ a=50° , / C=60,/ABC=180 - 50° -60° =70° ,又二 AD是高,,/ADC=90 ,,/DAC=180 - 90° - Z 0=30° ,AE BF是角平

30、分線,/ 0BF=Z ABF=35 , / EAF=25 , / DAE之 DA0- / EAF=5 ,/AFB=/ C+/ 0BF=60° +35° =95° , ,/BOA=Z EAF+Z AFB=25 +95° =120° , ./ DAC=30 , / BOA=120 .故/ DAE=5 , / BOA=120 .24. (2016春?故城縣期末)如圖,在 ABC中,AD! BC, AE平分/ BA0 / B=70° ,(1) / BAE的度數(shù);(2) / DAE的度數(shù);若能,請你寫出求解過程;若不能,請說明理由.【解答】 解

31、:(1)B+/C+/BAC=180 , ./BAC=180 - / B- /C=180° -70° -30° =80° , , AE平分/ BAC ./BAE/BAC=40 ; 2AD± BC, ./ADE=90 ,而/ ADE之 B+Z BAD ./BAD=90 / B=90° 70° =20/ C=30° .求:DAE的度數(shù)?(3)探究:小明認為如果條件/B=70° , / 0=30°改成/ B- / 0=40° ,也能得出/ /DAE之 BAE- / BAD=40 - 20

32、76; =20° ;(3)能., /B+/C+/ BAC=180 , ./ BAC=180 - / B- / C,. AE 平分/ BAG ./BAE=L / BAG=- (180° -ZB- / C) =90° -L (/B+/Q,222 ADL BC, ./ADE=90 ,而/ ADE之 B+Z BAD/ BAD=90 - / B,/ DAE=/ BAE- / BAD=90 ( / B+/ C) - (90° -ZB) =L (/ B- / C),22/ B - / C=40° , ./DAE=Lx 40° =20° .

33、225. (2016 春?淮安期中)在 4ABC 中,CD! AB 于 D, CE 是 / ACB 的平分線,/ A=20° , Z B=60° .求/ BCD / ECD勺度數(shù).【解答】解:CD! AB,/ CDB=90 ,/B=60° , ./BCD=90 Z B=90° 60° =30/A=20° , / B=60° , / A+/ B+Z ACB=180 ,./ACB=100 ,CE是/ ACB的平分線,ACE=-/ACB=50 , /CEB玄 A+/ ACE=20 +50° =70° ,/ECD

34、=90 70° =20°ABC26. (2016春?江蘇月考)我們知道,任何一個三角形的三條內(nèi)角平分線相交于一點,如圖,若 的三條內(nèi)角平分線相交于點I ,過I作DEL AI分別交AR AC于點D、E.(1)請你通過畫圖、度量,填寫右上表(圖畫在草稿紙上,并盡量畫準確)(2)從上表中你發(fā)現(xiàn)了/ BIC與/ BDI之間有何數(shù)量關系,請寫出來,并說明其中的道理./ BAC的度數(shù)40°60°90°120°/ BIC 的度數(shù)/ BDI 的度數(shù)【解答】解:(1)填寫表格如下:/ BAC的度數(shù)40°60°90°120&

35、#176;111/ BIC 的12135度數(shù)0050°°°°/ BDI 的度數(shù)110°120°135°150(2) / BIC=Z BDI,理由如下: ABC的三條內(nèi)角平分線相交于點I ,,/BIC=180° - (/ IBC+/ ICB)=180° - L (/ ABC吆 ACB2=180° - X (180° - / BAC2=90+1-Z BAC AI 平分/ BAC/ DAI=X/ DAE2 DEL AI 于 I ,,/AID=90° . .Z BDI=Z AID+Z DAI=90° + Z BAC ./ BIC=Z BDI.27.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論