電子科技大學(xué) 計(jì)算機(jī)入侵檢測(cè)技術(shù)2_第1頁(yè)
電子科技大學(xué) 計(jì)算機(jī)入侵檢測(cè)技術(shù)2_第2頁(yè)
電子科技大學(xué) 計(jì)算機(jī)入侵檢測(cè)技術(shù)2_第3頁(yè)
電子科技大學(xué) 計(jì)算機(jī)入侵檢測(cè)技術(shù)2_第4頁(yè)
電子科技大學(xué) 計(jì)算機(jī)入侵檢測(cè)技術(shù)2_第5頁(yè)
已閱讀5頁(yè),還剩45頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)計(jì)算機(jī)入侵檢測(cè)技術(shù)基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章 基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù) 第一節(jié) 引言 下一代的IDS需要通過(guò)各種異質(zhì)的分布式網(wǎng)絡(luò)傳感器來(lái)獲取并融合數(shù)據(jù),以形成對(duì)網(wǎng)絡(luò)系統(tǒng)的態(tài)勢(shì)估計(jì)。 這樣的IDS用到了多傳感器數(shù)據(jù)融合技術(shù),其概念最早出現(xiàn)于20世紀(jì)70年代的軍事領(lǐng)域,具有較強(qiáng)的軍事特色它已成功應(yīng)用于軍事和民用的諸多方面。定義定義2.1數(shù)據(jù)融合(Data Fusion):是一個(gè)多級(jí)多

2、側(cè)面的加工過(guò)程,包括對(duì)多個(gè)數(shù)據(jù)源的數(shù)據(jù)和信息的自動(dòng)化檢測(cè)、互聯(lián)、相關(guān)、估計(jì)和組合處理。 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第一節(jié) 引言本章的主要內(nèi)容包括:1、提出了一種新型基于多傳感器數(shù)據(jù)融合的網(wǎng)絡(luò)入侵檢測(cè)機(jī)制DFIDM;2、結(jié)合數(shù)據(jù)融合技術(shù)中的分布式多傳感器系統(tǒng),分別針對(duì)單目標(biāo)和多目標(biāo)的情況進(jìn)行理論分析,提出了數(shù)據(jù)融合技術(shù)能較大程度提高入侵檢測(cè)系統(tǒng)的有效性和準(zhǔn)確性的理論依據(jù);3、基于理論分析得出的依據(jù),詳細(xì)討論DFIDM機(jī)制的設(shè)計(jì)與實(shí)現(xiàn);4、研究DFIDM機(jī)制中數(shù)據(jù)校準(zhǔn)、實(shí)時(shí)性保證等其它一些重要問(wèn)題;5、對(duì)該機(jī)制進(jìn)行了實(shí)驗(yàn)驗(yàn)證和性能分析;第二章基

3、于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二節(jié) 數(shù)據(jù)融合技術(shù)的理論依據(jù) 一、數(shù)據(jù)融合技術(shù)的意義一、數(shù)據(jù)融合技術(shù)的意義1、提高系統(tǒng)穩(wěn)定性:即使某些傳感器失效、受到干擾或無(wú)法覆蓋事件和目標(biāo)的全體時(shí),仍有傳感器可以提供信息;2、擴(kuò)大觀測(cè)在空間和時(shí)間上的覆蓋范圍:利用多個(gè)傳感器,可以在不同時(shí)間和視點(diǎn)上觀測(cè)同一目標(biāo),擴(kuò)大了系統(tǒng)檢測(cè)的時(shí)空范圍;3、增加對(duì)象的信息量:由于采用了不同種類(lèi)的、在時(shí)空上分布的傳感器,可以在不同層面上獲取對(duì)象更多的互補(bǔ)信息;4、增加信息的準(zhǔn)確性;5、提高決策的準(zhǔn)確性。第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二

4、節(jié) 數(shù)據(jù)融合技術(shù)的理論依據(jù)二、融合系統(tǒng)的功能模塊二、融合系統(tǒng)的功能模塊從整體框架上看,一個(gè)融合系統(tǒng)的主要功能模塊包括:傳感器及其管理模塊、數(shù)據(jù)管理模塊、信息優(yōu)化融合模塊和數(shù)據(jù)傳輸通道。三、融合系統(tǒng)的基本結(jié)構(gòu)三、融合系統(tǒng)的基本結(jié)構(gòu)根據(jù)多傳感器系統(tǒng)中觀測(cè)、決策和融合的關(guān)系,大體上可分為集中式和分布式兩種基本結(jié)構(gòu)。 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)三、融合系統(tǒng)的基本結(jié)構(gòu)1、 集中式結(jié)構(gòu)中,各傳感器對(duì)目標(biāo)進(jìn)行觀測(cè)所得到的原始數(shù)據(jù)全部送到融合中心FC(Fusion Center),由融合中心完成對(duì)數(shù)據(jù)的各種處理,然后做出最終決策。觀測(cè)器1觀測(cè)器2觀測(cè)器n融

5、合中心最終決策.圖2.1集中式融合系統(tǒng)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)三、融合系統(tǒng)的基本結(jié)構(gòu)2、分布式結(jié)構(gòu)分為以下三種(1)并行結(jié)構(gòu)對(duì)信道帶寬與融合中心處理能力的要求較低,本章的DFIDM就采用這種結(jié)構(gòu)。本地決策1融合中心最終決策.檢測(cè)器1檢測(cè)器1檢測(cè)器1本地決策2本地決策3圖2.2并行分布式融合系統(tǒng)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)三、融合系統(tǒng)的基本結(jié)構(gòu)(2)串行分布式融合系統(tǒng)。第一個(gè)檢測(cè)器,其余每個(gè)檢測(cè)器在接收自己的觀測(cè)數(shù)據(jù)之外,還能獲得上一個(gè)檢測(cè)器的決策,融合后的最終結(jié)果由最后一個(gè)檢測(cè)器輸出。串

6、行結(jié)構(gòu)在鏈路發(fā)生故障時(shí)會(huì)導(dǎo)致整個(gè)系統(tǒng)都會(huì)受到影響,故應(yīng)用場(chǎng)合比并行結(jié)構(gòu)少檢測(cè)器1檢測(cè)器n檢測(cè)器2觀測(cè)1 觀測(cè)2 觀測(cè)n 本地決策1本地決策2.本地決策n最終決策圖2.3 串行分布式融合系統(tǒng) 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)三、融合系統(tǒng)的基本結(jié)構(gòu)(3)網(wǎng)絡(luò)分布式融合系統(tǒng)。第0層的各個(gè)檢測(cè)器接收自己的觀測(cè)矢量并做出決策,形成第1層輸入矢量。從第1層到第k層為中間融合層,第k1層為最終融合層。這種多層決策融合網(wǎng)絡(luò)可以實(shí)現(xiàn)比單純并行或串行更優(yōu)的功能,但會(huì)大大增加系統(tǒng)的開(kāi)銷(xiāo)。本地決策1本地決策n本地決策2融合1,1融合1,2融合1,n1融合k,i融合k,1

7、融合k,nk融合k1,nk.第0層第1層第k層第k1層.圖2.4 網(wǎng)絡(luò)分布式融合系統(tǒng)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)四、分布式檢測(cè)與決策融合的概念模型由傳感器、決策器和融合中心組成,其模型如下圖。圖 2.5 單目標(biāo)并行分布式檢測(cè)與決策融合系統(tǒng)入侵行為u. .u1unu2決策器g2決策器gn傳感器2傳感器nu2融合中心(FC)檢測(cè)器(DM)g傳感器1決策器g1第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)四、分布式檢測(cè)與決策融合的概念模型a、先給出其概念模型:設(shè)有 個(gè)假設(shè)(Hypothesis): , , (對(duì)于二

8、元假設(shè)為,可表示入侵行為的有或無(wú)) b、設(shè)有n個(gè)檢測(cè)器,每個(gè)檢測(cè)器DM(Decision Maker)由傳感器(Sensor)和決策器組成。第i個(gè)檢測(cè)器對(duì)目標(biāo)的觀測(cè)矢量為 = , i=1,2,n ,每個(gè)檢測(cè)器DM根據(jù)其目標(biāo)觀測(cè)矢量 ,按一定方法和準(zhǔn)則做出相應(yīng)本地決策 =C、該模型僅對(duì)檢測(cè)一種入侵行為有效,稱(chēng)為“單目標(biāo)多傳感器二元融合系統(tǒng)”;當(dāng)系統(tǒng)需要同時(shí)對(duì)多種入侵行為進(jìn)行檢測(cè),則需要對(duì)該模型進(jìn)行擴(kuò)展,稱(chēng)為“多目標(biāo)多傳感器二元融合系統(tǒng)”。m2Hixif(H) iu)(iixg ixmH2H第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)五、通過(guò)多傳感器提高系統(tǒng)準(zhǔn)確

9、性的幾個(gè)結(jié)論結(jié)論一結(jié)論一:在適當(dāng)?shù)娜诤喜呗苑绞较拢鄠鞲衅魅诤现蟮臈l件熵不大于單傳感器的條件熵,即多傳感器系統(tǒng)的融合輸出可以獲得更小的不確定度。結(jié)論二結(jié)論二:當(dāng)觀測(cè)信息相關(guān)性最小,也即它們相互獨(dú)立時(shí) , 融 合 系 統(tǒng) 對(duì) 輸 出 不 準(zhǔn) 確 性 的 壓 縮 能 力(Compress Ability)最大。為此,在系統(tǒng)中各傳感器之間應(yīng)相互無(wú)關(guān),互不干擾。結(jié)論三結(jié)論三:融合系統(tǒng)的性能還取決于是否最大程度的提取了系統(tǒng)的先驗(yàn)信息,即系統(tǒng)的融合性能與各檢測(cè)器的自身性能密切相關(guān)。第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第三節(jié) 單目標(biāo)多傳感器二元融合系統(tǒng) 系統(tǒng)模型

10、圖如下:u檢測(cè)器融合中心決策器 g1決策器 g2決策器 gn傳感器 1傳感器 2傳感器 nU2g入侵類(lèi)型( H ,0)H1U1Un圖2.6 單目標(biāo)、二元并行分布式融合系統(tǒng) 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第三節(jié) 單目標(biāo)多傳感器二元融合系統(tǒng)a、設(shè)二元假設(shè): 表示不存在目標(biāo), 表示存在目標(biāo),它們的先驗(yàn)概率分別為 和 。各檢測(cè)器 將各自決策 和決策水平 與 傳遞到融合中心,融合中心基于這些本地決策作出最后的決策 。b、通過(guò)推導(dǎo)可得最終融合可靠性函數(shù):niiiauauL10) 12()(0H1H00)(PHP11)(PHPiDMiuFiPMiPu第二章基

11、于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第三節(jié) 單目標(biāo)多傳感器二元融合系統(tǒng)結(jié)論四結(jié)論四:對(duì)于單目標(biāo)二元的多傳感器融合系統(tǒng),a、融合后的最終可靠性由被檢測(cè)目標(biāo)的先驗(yàn)概率、各檢測(cè)器的虛警概率和漏報(bào)概率所決定,可表達(dá)為以上函數(shù)關(guān)系;b、由于 各不相同,各檢測(cè)器會(huì)對(duì)最終決策產(chǎn)生不同程度的影響。虛警率和漏報(bào)率越小的檢測(cè)器對(duì)最終決策的影響越大;c、為保證融合公式中 的準(zhǔn)確性,在系統(tǒng)運(yùn)行前和運(yùn)行過(guò)程中,都應(yīng)進(jìn)行統(tǒng)一的功能測(cè)試;iaia第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第三節(jié) 單目標(biāo)多傳感器二元融合系統(tǒng)d、在得到最終融合可靠性系數(shù)后

12、,系統(tǒng)還需要提供閾值和判決函數(shù)來(lái)得出最終的判決結(jié)果,可表示如下:目標(biāo)存在:目標(biāo)不存在,若,若10)(1)(0)(HHAuLAuLuLf第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第四節(jié) 多目標(biāo)多傳感器二元融合系統(tǒng) 在實(shí)際應(yīng)用場(chǎng)合下,如果需要對(duì)同時(shí)發(fā)生的多種入侵行為進(jìn)行判斷,可將其擴(kuò)展為多目標(biāo)多傳感器二元融合系統(tǒng)。其系統(tǒng)模型圖如下:(u)檢測(cè)器融合中心決策器 g1決策器 g2決策器 gn傳感器 1傳感器 2傳感器 n(U2)g入侵類(lèi)型1( H ,0)H1 入侵類(lèi)型2( H ,0)H1入侵類(lèi)型m( H ,0)H1(U1)(Un)圖2.7 多目標(biāo)、二元并行分布式融

13、合系統(tǒng)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第四節(jié) 多目標(biāo)多傳感器二元融合系統(tǒng)一、基本思路:將多目標(biāo)多傳感器二元融合系統(tǒng)的問(wèn)題,轉(zhuǎn)化為m個(gè)單目標(biāo)多傳感器二元融合系統(tǒng)的問(wèn)題。二、系統(tǒng)所檢測(cè)的目標(biāo)是二元目標(biāo),每個(gè)目標(biāo)代表了一種已知入侵類(lèi)型,每個(gè)類(lèi)型的二元假設(shè)分別代表了該入侵類(lèi)型的發(fā)生與否,n個(gè)檢測(cè)器仍然通過(guò)分布式結(jié)構(gòu)對(duì)多個(gè)目標(biāo)進(jìn)行檢測(cè)。三、依據(jù):從系統(tǒng)的設(shè)計(jì)目標(biāo)來(lái)看,并不需要在檢測(cè)過(guò)程中建立不同入侵類(lèi)型之間的關(guān)聯(lián),因而以上方法是符合設(shè)計(jì)要求的。第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第四節(jié) 多目標(biāo)多傳感器二元融合系統(tǒng)

14、四、數(shù)據(jù)結(jié)構(gòu)的變化:1、本地檢測(cè)為向量,對(duì)于檢測(cè)器i的本地決策可表示如下,一般地, 表示檢測(cè)器 對(duì)攻擊類(lèi)型 的檢測(cè)結(jié)果。 2、本地決策經(jīng)過(guò)融合中心處理后得到的最終融合結(jié)果 ,也是一個(gè)與 表達(dá)方式相同的向量。3、在融合中心進(jìn)行數(shù)據(jù)融合的過(guò)程中,數(shù)據(jù)樣本并非向量而是一個(gè)mn的矩陣。jAij)(u)(iumA.01第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第五節(jié) 多目標(biāo)多傳感器二元融合系統(tǒng) DFIDM的層次模型和功能布局如圖2.8所示 最終決策TA(威脅估價(jià))DR(數(shù)據(jù)提取模塊)DS(分布式傳感器) 網(wǎng)絡(luò)原始數(shù)據(jù)管理策略O(shè)R(對(duì)象提取模塊)圖2.8 DFIDM的

15、層次和功能模型第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第五節(jié) 多目標(biāo)多傳感器二元融合系統(tǒng)一、按整個(gè)系統(tǒng)的功能劃分為一、按整個(gè)系統(tǒng)的功能劃分為5 5個(gè)層次個(gè)層次:1、首先通過(guò)遍布系統(tǒng)各處的分布式傳感器獲取原始數(shù)據(jù);2、原始數(shù)據(jù)經(jīng)過(guò)校準(zhǔn)過(guò)濾后填寫(xiě)標(biāo)準(zhǔn)的原始數(shù)據(jù)記錄庫(kù),并形成相關(guān)對(duì)象;3、對(duì)象提取在時(shí)間(或空間)上相關(guān)聯(lián),其數(shù)據(jù)按統(tǒng)一標(biāo)準(zhǔn)關(guān)聯(lián)、配對(duì)、分類(lèi),形成一個(gè)基于對(duì)象的集合;4、利用融合決策算法,對(duì)狀態(tài)進(jìn)行提取以形成對(duì)入侵行為的威脅評(píng)估;5、根據(jù)威脅評(píng)估進(jìn)行最終決策;6、在以上層次結(jié)構(gòu)以外,管理策略獨(dú)立存在并管理、維護(hù)整個(gè)系統(tǒng)。第二章基于多傳感器數(shù)據(jù)融合的

16、入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第五節(jié) 多目標(biāo)多傳感器二元融合系統(tǒng)二、各部分功能說(shuō)明二、各部分功能說(shuō)明 1、分布式傳感器DS(Distributing Sensors)布置在系統(tǒng)的各個(gè)部分,主要分為兩類(lèi),即基于主機(jī)的傳感器和基于網(wǎng)絡(luò)的傳感器,這些傳感器用來(lái)獲取來(lái)自網(wǎng)絡(luò)或者主機(jī)的原始數(shù)據(jù);2、數(shù)據(jù)提取模塊DR(Data Refinement)應(yīng)布置于傳感器本地,以便于提高效率; 最終決策TA(威脅估價(jià))DR(數(shù)據(jù)提取模塊)DS(分布式傳感器) 網(wǎng)絡(luò)原始數(shù)據(jù)管理策略O(shè)R(對(duì)象提取模塊)圖2.8 DFIDM的層次和功能模型第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器

17、數(shù)據(jù)融合的入侵檢測(cè)技術(shù)二、各部分功能說(shuō)明3、為保證檢測(cè)的實(shí)時(shí)性,傳感器網(wǎng)絡(luò)必須比被保護(hù)的目標(biāo)網(wǎng)絡(luò)快,這樣才能及時(shí)做出分析和響應(yīng),關(guān)于保證該系統(tǒng)檢測(cè)功能的實(shí)時(shí)性問(wèn)題,本章將在后面詳細(xì)討論;4、對(duì)象提取OR(Object Refinement)和威脅估價(jià)TA(Threat Assessment)兩個(gè)模塊可一同布置于融合中心FS(Fusion Center)。這有利于對(duì)象提取時(shí),通過(guò)配準(zhǔn)形成一個(gè)基于對(duì)象的聚集的集合,同時(shí)也有利于狀態(tài)提取和威脅評(píng)估時(shí)的數(shù)據(jù)集中處理; 最終決策TA(威脅估價(jià))DR(數(shù)據(jù)提取模塊)DS(分布式傳感器) 網(wǎng)絡(luò)原始數(shù)據(jù)管理策略O(shè)R(對(duì)象提取模塊)圖2.8 DFIDM的層次和功

18、能模型第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第六節(jié) DFIDM的數(shù)據(jù)與對(duì)象提取 一、入侵行為的表示與存儲(chǔ)一、入侵行為的表示與存儲(chǔ)在在DFIDM中選擇類(lèi)似于中選擇類(lèi)似于SNMP MIB(Management Information Binary)的結(jié)構(gòu)來(lái)分類(lèi)存貯各類(lèi)入侵行)的結(jié)構(gòu)來(lái)分類(lèi)存貯各類(lèi)入侵行為,稱(chēng)之為入侵規(guī)則數(shù)據(jù)庫(kù),或規(guī)則樹(shù),如圖為,稱(chēng)之為入侵規(guī)則數(shù)據(jù)庫(kù),或規(guī)則樹(shù),如圖2.9。TCP/IP 1Hardware1.1Network1.2Transport1.3Application1.4Transport 1.3TCP1.3.1UDP1.3.2IC

19、MP1.3.3n1.3.nTCP 1.3.1SYN1.3.1.1SEQ1.3.1.2XXX1.3.1.3n1.3.1.n圖2.9 規(guī)則樹(shù)示意圖 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第六節(jié) DFIDM的數(shù)據(jù)與對(duì)象提取二、分布式傳感器二、分布式傳感器DSDS(Distributing SensorsDistributing Sensors)DSDS布置在系統(tǒng)的各個(gè)部分來(lái)獲取原始數(shù)據(jù),其輸出應(yīng)布置在系統(tǒng)的各個(gè)部分來(lái)獲取原始數(shù)據(jù),其輸出應(yīng)該是完整的網(wǎng)絡(luò)原始數(shù)據(jù)樣本。該是完整的網(wǎng)絡(luò)原始數(shù)據(jù)樣本。三、數(shù)據(jù)提取模塊三、數(shù)據(jù)提取模塊DRDR(Data Refinem

20、entData Refinement)DRDR應(yīng)布置于傳感器本地,以減小傳輸開(kāi)銷(xiāo),其作用是應(yīng)布置于傳感器本地,以減小傳輸開(kāi)銷(xiāo),其作用是對(duì)對(duì)DSDS的原始數(shù)據(jù)進(jìn)行預(yù)處理。主要功能為:的原始數(shù)據(jù)進(jìn)行預(yù)處理。主要功能為:1 1、對(duì)、對(duì)DSDS所提供的數(shù)據(jù)進(jìn)行過(guò)濾,保證數(shù)據(jù)的規(guī)范性;所提供的數(shù)據(jù)進(jìn)行過(guò)濾,保證數(shù)據(jù)的規(guī)范性;2 2、對(duì)、對(duì)DSDS提供的原始數(shù)據(jù)進(jìn)行本地決策,并形成相關(guān)對(duì)提供的原始數(shù)據(jù)進(jìn)行本地決策,并形成相關(guān)對(duì)象;象;第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)三、數(shù)據(jù)提取模塊DR(Data Refinement) 3 3、對(duì)本地決策后形成的對(duì)象標(biāo)志符、

21、對(duì)本地決策后形成的對(duì)象標(biāo)志符OIDOID,加上時(shí)間標(biāo),加上時(shí)間標(biāo)記記TTTT(Time TagTime Tag)和空間標(biāo)記)和空間標(biāo)記STST(Space TagSpace Tag),由),由此形成帶有時(shí)空標(biāo)記的此形成帶有時(shí)空標(biāo)記的OIDOID。DFIDMDFIDM為保證從目標(biāo)系統(tǒng)獲取的數(shù)據(jù)具有時(shí)間上的為保證從目標(biāo)系統(tǒng)獲取的數(shù)據(jù)具有時(shí)間上的一致性,在網(wǎng)絡(luò)各節(jié)點(diǎn)處維護(hù)標(biāo)準(zhǔn)的系統(tǒng)時(shí)間周期一致性,在網(wǎng)絡(luò)各節(jié)點(diǎn)處維護(hù)標(biāo)準(zhǔn)的系統(tǒng)時(shí)間周期SSTCSSTC(System Standard Time CycleSystem Standard Time Cycle),該時(shí)間周期),該時(shí)間周期在系統(tǒng)內(nèi)具有一致性和

22、唯一性。在系統(tǒng)內(nèi)具有一致性和唯一性。4 4、DRDR輸出的對(duì)象為本地決策輸出的對(duì)象為本地決策LDMLDM(Local DecisionLocal DecisionMakingMaking),主要包括時(shí)間標(biāo)記、空間標(biāo)記和入侵類(lèi)型),主要包括時(shí)間標(biāo)記、空間標(biāo)記和入侵類(lèi)型等,如圖等,如圖2.10所示。所示。 時(shí)間標(biāo)記TT入侵類(lèi)型OID空間標(biāo)記ST圖2.10 本地決策LDM示意圖第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第六節(jié) DFIDM的數(shù)據(jù)與對(duì)象提取四、對(duì)象提取四、對(duì)象提取OR(Object Refinement)OROR針對(duì)各節(jié)點(diǎn)傳來(lái)的針對(duì)各節(jié)點(diǎn)傳來(lái)的LDM

23、LDM進(jìn)行處理,應(yīng)布置于融合進(jìn)行處理,應(yīng)布置于融合中心中心FCFC。對(duì)象提取的作用,是按照共同的入侵類(lèi)型,。對(duì)象提取的作用,是按照共同的入侵類(lèi)型,對(duì)數(shù)據(jù)進(jìn)行區(qū)分,并形成一個(gè)基于對(duì)象的集合。對(duì)數(shù)據(jù)進(jìn)行區(qū)分,并形成一個(gè)基于對(duì)象的集合。按以下幾個(gè)步驟進(jìn)行按以下幾個(gè)步驟進(jìn)行1、OR通過(guò)初始數(shù)據(jù)緩存空間通過(guò)初始數(shù)據(jù)緩存空間ODC(Original Data Cache)接收并存儲(chǔ)來(lái)自各節(jié)點(diǎn))接收并存儲(chǔ)來(lái)自各節(jié)點(diǎn)LDM,該空間是一個(gè),該空間是一個(gè)對(duì)象存儲(chǔ)的集合;對(duì)象存儲(chǔ)的集合;2、網(wǎng)絡(luò)故障或延遲等因素可能導(dǎo)致同時(shí)產(chǎn)生的對(duì)象會(huì)、網(wǎng)絡(luò)故障或延遲等因素可能導(dǎo)致同時(shí)產(chǎn)生的對(duì)象會(huì)異步到達(dá),為此采用了三級(jí)延遲緩存的設(shè)

24、計(jì)思想來(lái)加異步到達(dá),為此采用了三級(jí)延遲緩存的設(shè)計(jì)思想來(lái)加以解決。以解決。ODC作為第一級(jí)緩存;二級(jí)緩存空間作為第一級(jí)緩存;二級(jí)緩存空間SDC用用作時(shí)間校準(zhǔn);三級(jí)緩存空間作時(shí)間校準(zhǔn);三級(jí)緩存空間TDC用作對(duì)最后按規(guī)則選用作對(duì)最后按規(guī)則選出的輸出對(duì)象集合進(jìn)行緩存。出的輸出對(duì)象集合進(jìn)行緩存。第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)四、對(duì)象提取OR(Object Refinement)3、對(duì)于、對(duì)于SDC中創(chuàng)建時(shí)間等于中創(chuàng)建時(shí)間等于DV的集合,的集合,OR可認(rèn)為已可認(rèn)為已通過(guò)時(shí)間校準(zhǔn)。其中,每個(gè)對(duì)象的時(shí)間標(biāo)記都相同。通過(guò)時(shí)間校準(zhǔn)。其中,每個(gè)對(duì)象的時(shí)間標(biāo)記都相同。

25、即將從即將從SDCSDC送到送到TDCTDC的一個(gè)集合的情況如圖的一個(gè)集合的情況如圖2.11所示:所示:O1O2時(shí) 間 標(biāo) 記 TT t0入 侵 類(lèi) 型 OID空 間 標(biāo) 記 ST時(shí) 間 標(biāo) 記 TT t0入 侵 類(lèi) 型 OID空 間 標(biāo) 記 ST時(shí) 間 標(biāo) 記 TT t0入 侵 類(lèi) 型 OID空 間 標(biāo) 記 STOm. .其 中 , 集 合 中 各 個(gè) 元 素 O的 的 時(shí) 間 TT相 同 ,等 于 t0, 而 空 間 標(biāo) 記 ST和 OID則 可 能 不 同 。圖2.11 即將從SDC傳輸?shù)絋DC的集合情況第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)四、

26、對(duì)象提取OR(Object Refinement)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)四、對(duì)象提取OR(Object Refinement)從從TDC最終輸出的若最終輸出的若干集合的情況如圖干集合的情況如圖2.12所示:所示:說(shuō)明:一般的,該集合群中任一集合p內(nèi)各個(gè)元素的時(shí)間TT相同,等于t0;入侵行為OID相同,等于p;而空間標(biāo)記ST則不同。. . . .集合p是kp個(gè)節(jié)點(diǎn)針對(duì)第p類(lèi)入侵所提交的對(duì)象O11O12時(shí)間標(biāo)記TTt0入侵類(lèi)型OID1空間標(biāo)記ST時(shí)間標(biāo)記TTt0入侵類(lèi)型OID1空間標(biāo)記STO1k1.時(shí)間標(biāo)記TTt0入侵類(lèi)型OID1空間標(biāo)記S

27、T集合1是k1個(gè)節(jié)點(diǎn)針對(duì)第一類(lèi)入侵所提交的對(duì)象O21O22時(shí)間標(biāo)記TTt0入侵類(lèi)型OID2空間標(biāo)記ST時(shí)間標(biāo)記TTt0入侵類(lèi)型OID2空間標(biāo)記STO2k2.時(shí)間標(biāo)記TTt0入侵類(lèi)型OID2空間標(biāo)記ST集合2是k2個(gè)節(jié)點(diǎn)針對(duì)第二類(lèi)入侵所提交的對(duì)象Op1空間標(biāo)記ST時(shí)間標(biāo)記TTt0入侵類(lèi)型OIDpOp2空間標(biāo)記ST時(shí)間標(biāo)記TTt0入侵類(lèi)型OIDpOpkp空間標(biāo)記ST時(shí)間標(biāo)記TTt0入侵類(lèi)型OIDp.圖圖2.12 OR最終輸出到最終輸出到TA的集合群的集合群第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)四、對(duì)象提取OR(Object Refinement)5、工作流

28、程如圖、工作流程如圖2.13所示所示來(lái)自各節(jié)點(diǎn)的LDM1,2,.,nODCSDCTDC存放原始數(shù)據(jù)的對(duì)象集合存放時(shí)間標(biāo)記相同的對(duì)象集合存放按特定規(guī)則選取后的對(duì)象集合,例如相同入侵類(lèi)型的集合輸出到TA圖2.13 OR的工作流程圖 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)四、對(duì)象提取OR(Object Refinement)接收各節(jié)點(diǎn)LDM1,2,n并存入ODC中每個(gè)WT對(duì)ODC內(nèi)的對(duì)象進(jìn)行一次處理該對(duì)象所對(duì)應(yīng)時(shí)間標(biāo)記的集合是否存在?是將該對(duì)象加入SDC中的相應(yīng)集合創(chuàng)建集合,并將該對(duì)象加入SDC中相應(yīng)集合START系統(tǒng)對(duì)SDC內(nèi)的各集合不斷輪詢集合創(chuàng)建時(shí)間=

29、DV?系統(tǒng)將該集合內(nèi)各元素,按不同入侵類(lèi)型重新劃分并形成集合群,存入TDC否否是END圖2.13 OR的工作流程圖 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第七節(jié) 融合與最終決策 本節(jié)討論本節(jié)討論DFIDM的最后一個(gè)部分的最后一個(gè)部分TA(Threaten Assessment),其作用主要有三個(gè),即融合策略與),其作用主要有三個(gè),即融合策略與算法、威脅評(píng)估以及啟動(dòng)響應(yīng)辦法。算法、威脅評(píng)估以及啟動(dòng)響應(yīng)辦法。 一、各本地決策與本地檢測(cè)器的可靠性系數(shù)一、各本地決策與本地檢測(cè)器的可靠性系數(shù)1 1、可靠性系數(shù)的調(diào)整可靠性系數(shù)的調(diào)整DFIDMDFIDM維護(hù)一個(gè)基于

30、各檢測(cè)器可靠性系數(shù)的二維矩維護(hù)一個(gè)基于各檢測(cè)器可靠性系數(shù)的二維矩陣陣 ,一般地,一般地, 為第為第i個(gè)檢測(cè)器對(duì)第個(gè)檢測(cè)器對(duì)第j種入侵行為的可種入侵行為的可靠性系數(shù),并根據(jù)系統(tǒng)實(shí)際性能不斷對(duì)其進(jìn)行調(diào)整??啃韵禂?shù),并根據(jù)系統(tǒng)實(shí)際性能不斷對(duì)其進(jìn)行調(diào)整。第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)一、各本地決策與本地檢測(cè)器的可靠性系數(shù)2、可靠性系數(shù)的計(jì)算可靠性系數(shù)的計(jì)算將一次融合過(guò)程的檢測(cè)器可靠性系數(shù)值記為將一次融合過(guò)程的檢測(cè)器可靠性系數(shù)值記為 ,并應(yīng)用于最終融合決策公式的計(jì)算中。從系統(tǒng)角度并應(yīng)用于最終融合決策公式的計(jì)算中。從系統(tǒng)角度來(lái)看,考慮到各檢測(cè)器的可靠性本身

31、具有相同的可來(lái)看,考慮到各檢測(cè)器的可靠性本身具有相同的可信度,簡(jiǎn)化起見(jiàn),信度,簡(jiǎn)化起見(jiàn),DFIDM將函數(shù)將函數(shù) g設(shè)定為算術(shù)平均設(shè)定為算術(shù)平均和,即和,即 :nniijj1第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第七節(jié) 融合與最終決策二、二、根據(jù)入侵檢測(cè)系統(tǒng)的實(shí)際需要,根據(jù)入侵檢測(cè)系統(tǒng)的實(shí)際需要,DFIDMDFIDM在進(jìn)行融合決在進(jìn)行融合決策時(shí)還引入了空間因素、時(shí)序因素、歷史記錄、人工策時(shí)還引入了空間因素、時(shí)序因素、歷史記錄、人工加權(quán)這四個(gè)主要因素:加權(quán)這四個(gè)主要因素:1、空間因素,是指目標(biāo)系統(tǒng)各節(jié)點(diǎn)上檢測(cè)器對(duì)同一種入侵行為、空間因素,是指目標(biāo)系統(tǒng)各節(jié)點(diǎn)

32、上檢測(cè)器對(duì)同一種入侵行為的聯(lián)合預(yù)警的聯(lián)合預(yù)警。 2、時(shí)序因素,是指當(dāng)真實(shí)攻擊發(fā)生時(shí),各節(jié)點(diǎn)由于網(wǎng)絡(luò)拓?fù)浜?、時(shí)序因素,是指當(dāng)真實(shí)攻擊發(fā)生時(shí),各節(jié)點(diǎn)由于網(wǎng)絡(luò)拓?fù)浜吐酚傻牟煌?,可能在?duì)同一入侵行為的檢測(cè)上出現(xiàn)異步性。路由的不同,可能在對(duì)同一入侵行為的檢測(cè)上出現(xiàn)異步性。 3、歷史記錄因素可針對(duì)具有一定規(guī)律的入侵行為提高準(zhǔn)確性,、歷史記錄因素可針對(duì)具有一定規(guī)律的入侵行為提高準(zhǔn)確性,本文僅選取特定的攻擊源本文僅選取特定的攻擊源IP地址段這一情況加以分析。為此,系地址段這一情況加以分析。為此,系統(tǒng)維護(hù)一個(gè)對(duì)應(yīng)于攻擊類(lèi)型來(lái)源的列表,使用可變階二維矩陣統(tǒng)維護(hù)一個(gè)對(duì)應(yīng)于攻擊類(lèi)型來(lái)源的列表,使用可變階二維矩陣表表達(dá)

33、。達(dá)。 4、鑒于入侵行為并非完全按可預(yù)知的方式進(jìn)行,而常常具有突、鑒于入侵行為并非完全按可預(yù)知的方式進(jìn)行,而常常具有突發(fā)性、階段性,在融合因素中人為的權(quán)衡也有其存在的合理性,發(fā)性、階段性,在融合因素中人為的權(quán)衡也有其存在的合理性,為此引入了人為判斷系數(shù)為此引入了人為判斷系數(shù)。 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第七節(jié) 融合與最終決策三、三、融合結(jié)果融合結(jié)果最終決策結(jié)果表達(dá)為各影響因素的函數(shù)。最終決策結(jié)果表達(dá)為各影響因素的函數(shù)。由于無(wú)論對(duì)函數(shù)由于無(wú)論對(duì)函數(shù)f f的準(zhǔn)確性怎樣進(jìn)行優(yōu)化,這的準(zhǔn)確性怎樣進(jìn)行優(yōu)化,這5個(gè)因素個(gè)因素實(shí)際上應(yīng)該對(duì)決策結(jié)果施加的影

34、響大小,都難以被準(zhǔn)實(shí)際上應(yīng)該對(duì)決策結(jié)果施加的影響大小,都難以被準(zhǔn)確的反映為具體數(shù)值。確的反映為具體數(shù)值。DFIDM的最終決策結(jié)果以定性的最終決策結(jié)果以定性分析為主,定量計(jì)算為輔。分析為主,定量計(jì)算為輔。),(f第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)三、融合結(jié)果1、定性結(jié)果的描述定性結(jié)果的描述系統(tǒng)能詳細(xì)、規(guī)范地對(duì)融合過(guò)程中所涉及的因素進(jìn)行描述,系統(tǒng)能詳細(xì)、規(guī)范地對(duì)融合過(guò)程中所涉及的因素進(jìn)行描述,并提交相關(guān)報(bào)告,系統(tǒng)管理者能很詳細(xì)地對(duì)目標(biāo)系統(tǒng)中可能發(fā)并提交相關(guān)報(bào)告,系統(tǒng)管理者能很詳細(xì)地對(duì)目標(biāo)系統(tǒng)中可能發(fā)生的各類(lèi)入侵狀況進(jìn)行了解,并在此基礎(chǔ)上進(jìn)行相應(yīng)處理。生

35、的各類(lèi)入侵狀況進(jìn)行了解,并在此基礎(chǔ)上進(jìn)行相應(yīng)處理。2、定量公式計(jì)算定量公式計(jì)算 設(shè)系統(tǒng)最終決策為設(shè)系統(tǒng)最終決策為 Z,可用一維數(shù)組表達(dá),其分量可用一維數(shù)組表達(dá),其分量 表表示對(duì)第示對(duì)第j j種入侵行為的決策值,將所有因素等同考慮,則可得:種入侵行為的決策值,將所有因素等同考慮,則可得:qjjjjjj)(第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)2、定量公式計(jì)算最終決策最終決策Z Z是元素值介于是元素值介于0 0到到1 1之間的一維數(shù)組,分別對(duì)之間的一維數(shù)組,分別對(duì)應(yīng)了各類(lèi)入侵在某個(gè)時(shí)刻,經(jīng)過(guò)應(yīng)了各類(lèi)入侵在某個(gè)時(shí)刻,經(jīng)過(guò)DFIDMDFIDM融合后的發(fā)生概融合

36、后的發(fā)生概率。由于各個(gè)影響因素在入侵實(shí)際發(fā)生時(shí),可能會(huì)對(duì)率。由于各個(gè)影響因素在入侵實(shí)際發(fā)生時(shí),可能會(huì)對(duì)融合決策起到不同作用,故可以加入調(diào)整系數(shù)序融合決策起到不同作用,故可以加入調(diào)整系數(shù)序列列 ,對(duì)于不同因素進(jìn)行調(diào)整,擴(kuò)展的計(jì)算對(duì)于不同因素進(jìn)行調(diào)整,擴(kuò)展的計(jì)算公式為:公式為:51, ibiqbbbbbjjjjjj)(54321第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第七節(jié) 融合與最終決策四、處理與響應(yīng)辦法四、處理與響應(yīng)辦法在得到最終融合可靠性系數(shù)在得到最終融合可靠性系數(shù)L(u)L(u)后,系統(tǒng)還需要后,系統(tǒng)還需要提供閾值提供閾值A(chǔ) A和判決函數(shù)和判決函數(shù)f

37、()f(),來(lái)得出最終判決結(jié)果,來(lái)得出最終判決結(jié)果f(L(u)f(L(u)。 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)四、處理與響應(yīng)辦法當(dāng)系統(tǒng)具有低、中、高響應(yīng)辦法時(shí),閾值當(dāng)系統(tǒng)具有低、中、高響應(yīng)辦法時(shí),閾值A(chǔ) A和判決函數(shù)和判決函數(shù)f()f()的方式可以設(shè)置如下:的方式可以設(shè)置如下: 取值在取值在0,0.30,0.3(閾值條(閾值條件件 )之間對(duì)應(yīng)威脅程度為低;)之間對(duì)應(yīng)威脅程度為低;0.3,0.70.3,0.7(閾值條(閾值條件件 )對(duì)應(yīng)威脅程度為中;大于)對(duì)應(yīng)威脅程度為中;大于0.70.7(閾值條件(閾值條件 )為高。然后根據(jù)判決結(jié)果,系統(tǒng)啟動(dòng)不同

38、的響應(yīng)處理為高。然后根據(jù)判決結(jié)果,系統(tǒng)啟動(dòng)不同的響應(yīng)處理辦法。辦法。 j1A2A3A 3 . 0 , 0)(,7 . 0 , 3 . 0)(,0 . 1 , 7 . 0)(, ,)(uLuLuLuLf記入日志低等級(jí)威脅系統(tǒng)報(bào)警中等級(jí)威脅立即處理高等級(jí)威脅第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第七節(jié) 融合與最終決策五、管理策略五、管理策略 最后是系統(tǒng)管理策略,在以上最后是系統(tǒng)管理策略,在以上層次結(jié)構(gòu)以外,系統(tǒng)的整體管層次結(jié)構(gòu)以外,系統(tǒng)的整體管理策略獨(dú)立存在并管理、維護(hù)理策略獨(dú)立存在并管理、維護(hù)整個(gè)系統(tǒng)。其功能包括:規(guī)則整個(gè)系統(tǒng)。其功能包括:規(guī)則庫(kù)升級(jí)、各

39、層次數(shù)據(jù)庫(kù)的維護(hù)庫(kù)升級(jí)、各層次數(shù)據(jù)庫(kù)的維護(hù)(初始化、定期清空等)、系(初始化、定期清空等)、系統(tǒng)各部分的性能檢查與調(diào)優(yōu),統(tǒng)各部分的性能檢查與調(diào)優(yōu),等等。等等。入侵類(lèi)型編號(hào):j入侵類(lèi)型名稱(chēng):XXX本次入侵涉及的檢測(cè)器編號(hào):. .0,n量化計(jì)算參考值:0.xx 0,1對(duì)應(yīng)威脅等級(jí): (高、中、低)2、細(xì)節(jié)描述:各檢測(cè)器可靠性系數(shù)對(duì)應(yīng)關(guān)系:. .0,n時(shí)間可靠性系數(shù)值:0.xx歷史記錄可靠性系數(shù)值:0.xx人工加權(quán)系數(shù)值:0.xx本次量化計(jì)算選擇的系數(shù)序列a:. .本次量化計(jì)算選擇的計(jì)算公式Z:. .3、建議的響應(yīng)辦法:略1、宏觀描述:對(duì)第j類(lèi)入侵的報(bào)告:入侵發(fā)生時(shí)間:t0. . .圖2.14 FD

40、IDM最終決策報(bào)告 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第八節(jié) DFIDM的及時(shí)性和準(zhǔn)確性一、一、DFIDM的及時(shí)性的及時(shí)性 1、在以網(wǎng)絡(luò)為平臺(tái)的融合系統(tǒng)中,分布式傳感器所獲、在以網(wǎng)絡(luò)為平臺(tái)的融合系統(tǒng)中,分布式傳感器所獲得的數(shù)據(jù)需要盡可能地在本地處理,這是實(shí)現(xiàn)得的數(shù)據(jù)需要盡可能地在本地處理,這是實(shí)現(xiàn)DFIDM及時(shí)性的第一個(gè)重要措施。及時(shí)性的第一個(gè)重要措施。 2、為保證及時(shí)性,還需要通過(guò)建立獨(dú)立、高速的檢測(cè)、為保證及時(shí)性,還需要通過(guò)建立獨(dú)立、高速的檢測(cè)網(wǎng)絡(luò)或?qū)δ繕?biāo)網(wǎng)絡(luò)進(jìn)行限速來(lái)實(shí)現(xiàn)。網(wǎng)絡(luò)或?qū)δ繕?biāo)網(wǎng)絡(luò)進(jìn)行限速來(lái)實(shí)現(xiàn)。二、二、DFIDM的準(zhǔn)確性與性能優(yōu)化,

41、需要通過(guò)定期測(cè)試和的準(zhǔn)確性與性能優(yōu)化,需要通過(guò)定期測(cè)試和調(diào)優(yōu)來(lái)加以解決。調(diào)優(yōu)來(lái)加以解決。第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第九節(jié) 實(shí)驗(yàn)環(huán)境、結(jié)果與性能分析 一、實(shí)驗(yàn)準(zhǔn)備:一、實(shí)驗(yàn)準(zhǔn)備:實(shí)驗(yàn)環(huán)境為實(shí)驗(yàn)環(huán)境為1個(gè)融合中心個(gè)融合中心FC(Intel服務(wù)器服務(wù)器1G),),5個(gè)節(jié)點(diǎn)(個(gè)節(jié)點(diǎn)(PC賽揚(yáng)賽揚(yáng)666),),攻擊數(shù)據(jù)由攻擊數(shù)據(jù)由1臺(tái)臺(tái)PC賽揚(yáng)賽揚(yáng)666提供。提供。為了既驗(yàn)證為了既驗(yàn)證DFIDM機(jī)制的有效性,又易于操作,機(jī)制的有效性,又易于操作,實(shí)驗(yàn)中下載了五種開(kāi)放源碼的入侵檢測(cè)系統(tǒng),實(shí)驗(yàn)中下載了五種開(kāi)放源碼的入侵檢測(cè)系統(tǒng),分別是分別是snort(版

42、本(版本1.7)、)、PSAD (版本(版本1.2)、)、Bro(版本(版本0.7)、)、preclude(版本(版本0.7)、)、IDES(版本(版本0.4)。 第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第九節(jié) 實(shí)驗(yàn)環(huán)境、結(jié)果與性能分析1 1、漏報(bào)率的比較實(shí)驗(yàn):、漏報(bào)率的比較實(shí)驗(yàn):為測(cè)試為測(cè)試DFIDMDFIDM的漏報(bào)率,選擇了的漏報(bào)率,選擇了5 5種入侵類(lèi)型。種入侵類(lèi)型。分別對(duì)同時(shí)攻擊類(lèi)型為分別對(duì)同時(shí)攻擊類(lèi)型為1 1、3 3、5 5的情況進(jìn)行的情況進(jìn)行3 3組實(shí)驗(yàn),組實(shí)驗(yàn),每組實(shí)驗(yàn)分別進(jìn)行了每組實(shí)驗(yàn)分別進(jìn)行了10001000次,得出次,得出3 3組數(shù)據(jù)

43、,這些組數(shù)據(jù),這些數(shù)據(jù)為融合后的結(jié)果數(shù)據(jù)為融合后的結(jié)果 。以。以0.50.5為閾值,判斷其檢為閾值,判斷其檢測(cè)結(jié)果是否正確,正確記為測(cè)結(jié)果是否正確,正確記為1 1,否則為,否則為0 0。最后對(duì)每。最后對(duì)每組實(shí)驗(yàn)中同一入侵類(lèi)型,計(jì)算所有樣本數(shù)據(jù)之和的組實(shí)驗(yàn)中同一入侵類(lèi)型,計(jì)算所有樣本數(shù)據(jù)之和的算術(shù)平均值算術(shù)平均值e e,得到,得到DFIDMDFIDM漏報(bào)率的平均值漏報(bào)率的平均值1 1e e。此。此后,對(duì)后,對(duì)snortsnort和和BroBro同樣進(jìn)行上述同樣進(jìn)行上述3 3組實(shí)驗(yàn),各組實(shí)驗(yàn),各10001000次,采用同樣方法得到其漏報(bào)率,并列表比較。次,采用同樣方法得到其漏報(bào)率,并列表比較。j第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第九節(jié) 實(shí)驗(yàn)環(huán)境、結(jié)果與性能分析漏報(bào)率的比較數(shù)據(jù)如下表漏報(bào)率的比較數(shù)據(jù)如下表2.12.1:(1)(1)、同時(shí)攻擊種類(lèi)為、同時(shí)攻擊種類(lèi)為1 1時(shí):時(shí):攻擊類(lèi)攻擊類(lèi)型型攻擊實(shí)現(xiàn)工攻擊實(shí)現(xiàn)工具具漏報(bào)率()漏報(bào)率()SnortBro DFIDMTCP FloodTFN4.13.70.9表2.1 攻擊種類(lèi)為1時(shí)的結(jié)果比較第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第二章基于多傳感器數(shù)據(jù)融合的入侵檢測(cè)技術(shù)第九節(jié) 實(shí)驗(yàn)環(huán)境、結(jié)果與性能分析(2)(2)、同時(shí)攻擊種類(lèi)為、同時(shí)攻擊種類(lèi)為3 3時(shí):時(shí): 攻擊類(lèi)型攻擊類(lèi)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論