![依照Vi的順序一一尋找每一組Vi的最短路徑ppt課件_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/d3d11e8d-b974-4de3-9d19-2c722458faf2/d3d11e8d-b974-4de3-9d19-2c722458faf21.gif)
![依照Vi的順序一一尋找每一組Vi的最短路徑ppt課件_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/d3d11e8d-b974-4de3-9d19-2c722458faf2/d3d11e8d-b974-4de3-9d19-2c722458faf22.gif)
![依照Vi的順序一一尋找每一組Vi的最短路徑ppt課件_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/d3d11e8d-b974-4de3-9d19-2c722458faf2/d3d11e8d-b974-4de3-9d19-2c722458faf23.gif)
![依照Vi的順序一一尋找每一組Vi的最短路徑ppt課件_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/d3d11e8d-b974-4de3-9d19-2c722458faf2/d3d11e8d-b974-4de3-9d19-2c722458faf24.gif)
![依照Vi的順序一一尋找每一組Vi的最短路徑ppt課件_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/d3d11e8d-b974-4de3-9d19-2c722458faf2/d3d11e8d-b974-4de3-9d19-2c722458faf25.gif)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、GraphMSTMSTvPrims Algorithmv按照Vi的順序一一尋找每一組Vi的最短路徑,畫(huà)出spanning treevKruskal Algorithmv尋找整個(gè)圖中的最短路徑,在一一將其連接起來(lái)Prims AlgorithmvPrims algorithm has the property that the edges in the set A always form a single tree. vWe begin with some vertex v in a given graph G =(V, E)vDefining the initial set of vertice
2、s A. vThen, in each iteration, we choose a minimum-weight edge (u, v), connecting a vertex v in the set A to the vertex u outside of set A. Then vertex u is brought in to A. This process is repeated until a spanning tree is formed.Prims Algorithm (cont.)vPrim-MST(G) vSelect an arbitrary vertex to st
3、art the tree from. vWhile (there are still non-tree vertices) vSelect the edge of minimum weight between a tree and non-tree vertex vAdd the selected edge and vertex to the tree . vAnalysis: O(n2)Prims Algorithm (cont.)Total cost: 66練習(xí)Kruskals AlgorithmvThe Kruskal Algorithm starts with a forest whi
4、ch consists of n trees.vEach and everyone tree,consists only by one node and nothing else.vIn every step of the algorithm,two different trees of this forest are connected to a bigger tree.vTherefore ,we keep having less and bigger trees in our forest until we end up in a tree which is the minimum sp
5、anning treeKruskals Algorithm (cont.)The forest is constructed - with each node in a separate tree. The edges are placed in a priority queue. Until weve added n-1 edges, Extract the cheapest edge from the queue, If it forms a cycle, reject it, Else add it to the forest. Adding it to the forest will
6、join two trees together. Every step will have joined two trees in the forest together, so that at the end, there will only be one tree in T. Kruskals Algorithm (cont.)Total cost: 49練習(xí)Shortest Pathv在一個(gè)有向圖形G=(V,E),G中每一個(gè)邊都有一個(gè)比例常數(shù)W(Weight)與之對(duì)應(yīng),假想象求G圖形中某一個(gè)頂VO到其它頂點(diǎn)的最少W總和之值,這類(lèi)問(wèn)題就稱(chēng)為最短路徑問(wèn)題(The Shortest Path
7、Problem)v單點(diǎn)對(duì)全部頂點(diǎn)的最短距離及一切頂點(diǎn)兩兩之間的最短距離。Dijkstras Algorithmv一個(gè)頂點(diǎn)到多個(gè)頂點(diǎn)通常運(yùn)用Dijkstra演算法求得,Dijkstra的演算法如下:v假設(shè)S=Vi|ViV,且Vi在已發(fā)現(xiàn)的最短路徑,其中V0 S是起點(diǎn)。v假設(shè)w S,定義Dist(w)是從V0到w的最短路徑,這條路徑除了w外必屬於S。且有以下幾點(diǎn)特性:v假設(shè)u是目前所找到最短路徑之下一個(gè)節(jié)點(diǎn),則u必屬於V-S集合中最小花費(fèi)本錢(qián)的邊。Dijkstras Algorithm (cont.)假設(shè)u被選中,將u參與S集合中,則會(huì)產(chǎn)生目前的由V0到u最短路徑,對(duì)於w S ,DIST(w)被改
8、變成DIST(w)MinDIST(w),DIST(u)+COST(u,w)Dijkstra的方法只能求出某一點(diǎn)到其他頂點(diǎn)的最短距離,假設(shè)要求出圖形中任兩點(diǎn)甚至一切頂點(diǎn)間最短的距離,就必須運(yùn)用Floyd演算法。Dijkstras Algorithm (cont.)vDijkstras algorithm can be expressed formally as follows: vG - arbitrary connected graph v0 - is the initial beginning vertex V - is the set of all vertices in the grap
9、h G S - set of all vertices with permanent labels n - number of vertices in G D - set of distances to v0 C - set of edges in G Dijkstras Algorithm (cont.)vDijkstra Algorithm (graph G, vertex v0) S=v0 For i = 1 to n Di = Cv0,i v For i = 1 to n-1 Choose a vertex w in V-S such that Dw is minimum Add w
10、to S For each vertex v in V-S Dv = min(Dv, Dw + Cw,v) 練習(xí)Floyd AlgorithmvFloyd演算法定義:vAkij=minAk-1ij,Ak-1ik+Ak-1 kj,1i,j nv其中Akij為從i到j(luò)不以註標(biāo)大於k之頂點(diǎn)為間接路徑頂點(diǎn)時(shí)之最短路徑的花費(fèi)。vA0ij=COSTij即A0便等於COSTvA0為頂點(diǎn)i到j(luò)間的直通距離。vAni,j代表i到j(luò)之最短路距離,即An便是我們所要求的最短路徑本錢(qián)矩陣。Floyd Algorithm (cont.)Example W = D0 =40520-30123123000000000123
11、123P =1235-324 D1 =405207-30123123000001000123123P =1235-324k = 1Vertex 1 can be intermediate node D12,3 = min( D02,3, D02,1+D01,3 )= min (, 7) = 7D13,2 = min( D03,2, D03,1+D01,2 )= min (-3,) = -340520-30123123D0 = D2 =405207-1-30123123000001200123123P =D21,3 = min( D11,3, D11,2+D12,3 )= min (5, 4+7
12、) = 5D23,1 = min( D13,1, D13,2+D12,1 )= min (, -3+2) = -11235-324 D1 =405207-30123123k = 2Vertices 1, 2 can be intermediate D3 =205207-1-30123123300001200123123P =D31,2 = min(D21,2, D21,3+D23,2 )= min (4, 5+(-3) = 2D32,1 = min(D22,1, D22,3+D23,1 )= min (2, 7+ (-1) = 2 D2 =405207-1-301231231235-324k
13、= 3Vertices 1, 2, 3 can be intermediate練習(xí)123414352Transitive Closure (cont.)vGiven a digraph G, the transitive closure of G is the digraph G* such thatvG* has the same vertices as Gvif G has a directed path from u to v (u v), G* has a directed edge from u to vvThe transitive closure provides reachab
14、ility information about a digraphBADCEBADCEGG*Transitive Closure (cont.)v建立一個(gè)路徑矩陣P,從這個(gè)矩陣中可以輕易的判斷圖形G中的任一兩點(diǎn)I跟j能否存在一路徑v先求得A1An An(aij)表示圖形node i 跟j存在為n的路徑總數(shù)v將矩陣A1.An全部相加,將總和存放在Bv將B矩陣中一切大於0的設(shè)定為1,將元素設(shè)定為0根1的矩陣,此矩陣的圖形G就是個(gè)長(zhǎng)度為n的Transtive closureTransitive Closure (cont.)Warshall (int N, int A, intP) int i,j,
15、k; for (i = 0; i N; i+) for (j = 0; j N; j+) /* Theres a path if theres an edge */ Pij = Aij; for (k = 0; k N; k+) for (i = 0; i N; i+) for (j = 0; j N; j+) if (! Pij) Pij = Pik & Pkj; /* Warshall */AOV網(wǎng)路根本定義v以圖形嚴(yán)謹(jǐn)?shù)亩x來(lái)說(shuō),AOV網(wǎng)路就是一種有向圖形,在這個(gè)有向圖形中的每一個(gè)節(jié)點(diǎn)代表一項(xiàng)任務(wù)或必須執(zhí)行的動(dòng)作,而那些有方向性的邊則代表了任務(wù)與任務(wù)之間存在的先後關(guān)係順序。也就是
16、說(shuō),表示必須處理先完Vi的任務(wù),才可以進(jìn)行Vj的任務(wù)。拓樸排序v拓樸排序的功能是將部分的排序partial ordering的關(guān)係轉(zhuǎn)換為線(xiàn)性的次序v具有這種特性的線(xiàn)性次序稱(chēng)為拓樸序列topologcal orderv拓樸序列需是個(gè)acyclic graphv產(chǎn)生的拓樸序列必非獨(dú)一拓樸排序的步驟:v步驟1v尋找圖形中任何一個(gè)沒(méi)有先行者 predecessor 的點(diǎn)。v步驟2v輸出此頂點(diǎn),並將此頂點(diǎn)的一切邊刪除。v步驟3v重複上兩個(gè)步驟處理一切頂點(diǎn)。C CD DE EG GH HF FI IK KJ JB BA A範(fàn)例v先選取沒(méi)有predecessor的A,將其移除並宜出其相關(guān)的edgeC CD
17、DE EG GH HF FI IK KJ JB BTopological order:A BEG CFH DI JKAOE網(wǎng)路和臨界路徑(critical path)v臨界路徑就是AOE有向圖形從源頭頂點(diǎn)到目的頂點(diǎn)間所需花費(fèi)時(shí)間最長(zhǎng)的一條有方向性的路徑,當(dāng)有一條以上的花費(fèi)時(shí)間相等,而且都是最長(zhǎng),則這些路徑都稱(chēng)為此AOE有向圖形的臨界路徑。相關(guān)練習(xí)v1048 106 miles to Chicago v1068 Islands and Bridges v1153 The Bottom of a Graph x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E
18、3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7
19、G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pX
20、lUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x
21、*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkTLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u
22、$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVkSgPdLaI7F3
23、C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeN
24、bK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaF3C0y)v&s#pXlUi
25、RfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnV
26、kSgPdMaI7F3C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v
27、%r#oXlTiQfNbK8G5z-w&t!qYmVjRgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0
28、z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQ
29、eNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2Bt$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI7F3C0y)v&s#
30、pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%rWkShPeMaJ7G4C1z)w&
31、;t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年數(shù)控機(jī)床智能能效分析行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年手腕氣壓按摩器行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年城市交通擁堵治理行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 18-萘內(nèi)酰亞胺項(xiàng)目績(jī)效評(píng)估報(bào)告
- 2025年度市政道路照明工程合同書(shū)
- 2025年度新型建筑材料分期采購(gòu)及安裝合同
- 2025年度養(yǎng)老產(chǎn)業(yè)項(xiàng)目可行性研究報(bào)告編制合同范本
- 2025年度智能化設(shè)備租賃合同
- 2025年度企業(yè)債券發(fā)行合同范本下載
- 2025年度環(huán)保節(jié)能建材采購(gòu)與應(yīng)用合同
- 四年級(jí)上冊(cè)英語(yǔ)試題-Module 9 Unit 1 What happened to your head--外研社(一起)(含答案)
- 辦理工傷案件綜合應(yīng)用實(shí)務(wù)手冊(cè)
- 子宮內(nèi)膜異位癥診療指南
- 《高級(jí)計(jì)量經(jīng)濟(jì)學(xué)》-上課講義課件
- 《現(xiàn)代氣候?qū)W》研究生全套教學(xué)課件
- 護(hù)理診斷及護(hù)理措施128條護(hù)理診斷護(hù)理措施
- 情商知識(shí)概述課件
- 九年級(jí)物理總復(fù)習(xí)教案
- 天然飲用山泉水項(xiàng)目投資規(guī)劃建設(shè)方案
- 2019年重慶市中考物理試卷(a卷)及答案
- 信義玻璃參數(shù)表
評(píng)論
0/150
提交評(píng)論