




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第1頁(共 23頁)2021 年超級全能生高考數學聯(lián)考試卷(理科)(5 月份) (丙卷)一、選擇題:本題共12 小題,每小題5 分,滿分60 分.在每小題給出的四個選項中,只有一項是符合題目要求的.1 ( 5 分)已知集合ay|y,bx|y,則 a b()a (0,+)b0,+)c (1,+)d1,+)2 ( 5 分)復數z 滿足 z( 1+i) ( 1i)2,則 z 的虛部為()a 2ib 2c2d2i3 ( 5 分)若 aln0.4,b0.23,clog23,則 a,b,c 的大小關系正確的是()abacbacbcbc adab c4 ( 5 分)隨著我國智慧城市建設加速和園區(qū)信息化發(fā)展趨
2、向成熟,智慧園區(qū)建設需求將持續(xù)增大,市場規(guī)?;謴洼^高增長態(tài)勢,未來發(fā)展空間廣闊下面是20172020 年中國智慧園區(qū)市場規(guī)模統(tǒng)計表,則下列結論錯誤的是()年份2017201820192020規(guī)模(億元)1888210122702417a2017 年到 2020 年我國智慧園區(qū)市場規(guī)模逐年增長b2017 年到 2020 年我國智慧園區(qū)市場規(guī)模增長率逐年增大c2017 年到 2020 年我國智慧園區(qū)市場規(guī)模的平均值約為2169 億元d2017 年到 2020 年我國智慧園區(qū)市場規(guī)模與年份成正相關5 ( 5 分)數列 an滿足 am+nam+an(m,n n*) ,a1 1,a20+a22+a24+
3、a40()a300b330c630d6006 ( 5 分)在 abc 中,3,d 是 be 上的點,若x+,則實數x 的值為()第2頁(共 23頁)abcd7 ( 5 分)若過函數f(x) lnx 2x 圖象上一點的切線與直線y2x+1 平行,則該切線方程為()a2xy10b2x y2ln2+1 0c2xy 2ln210d2x+y2ln21 08 ( 5 分)如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()ab4cd89 (5 分)陽春三月, 春暖花開, 某學校開展 “學雷鋒踐初心向建黨百年獻禮”志愿活動 現有 6 名男同學和4 名女同學,分派到4 個“
4、學雷鋒志愿服務站”參加志愿活動,若每個志愿服務站至少有男、女同學各1 名,共有不同的分配方案數為()a65b1560c25920d3744010 (5 分)雙曲線1(a0,b 0)的左、右焦點分別為f1,f2,若 p 為其上一點,且 |pf1|2|pf2|, f1pf2,則雙曲線的離心率為()ab2cd311 (5 分)如圖,四邊形abcd, a1add1,c1cdd1均為正方形動點e 在線段 a1c1上,f,g, m 分別是 ad,be,cd 的中點,則下列選項正確的是()第3頁(共 23頁)agmcebbm平面 cc1fc存在點 e,使得平面bef平面 cc1d1dd存在點e,使得平面be
5、f平面 aa1c1c12 (5 分)已知函數f(x)3x+1,且 f(a2) +f(3a4) 2,則實數a 的取值范圍是()a ( 4,1)b ( 3,2)c (0, 5)d ( 1, 4)二、填空題:本題共4 小題,每小題5 分,共 20 分。13 (5 分)若 x,y 滿足約束條件,則 z2x+y 的最大值為14 (5 分)設正項等比數列an的前 n 項和為 sn,且 a52a3+8a1,s430, 則 a615 (5 分)已知函數f(x) sin( x+) +在0,m上恰有10個零點,則m 的取值范圍是16 (5 分)函數 f(x) x2lnx(a r)在 內不存在極值點,則a 的取值范
6、圍是三、解答題:共70 分.解答應寫出文字說明、證明過程或演算步驟。第1721 題為必考題,每個試題考生都必須作答。第22,23 題為選考題,考生根據要求作答.(一)必考題:共60 分.17 (12 分) abc 的內角 a,b,c 的對邊分別為a,b, c,已知 atanb4bsin(b+c) ()求cosb;()若ab4,bc 3,d 為 ac 上一點,且ad2dc,求 bd第4頁(共 23頁)18 (12 分)如圖,在圓柱oo1中, ce 是圓柱的一條母線,abcd 是圓 o 的內接四邊形,ab 是圓 o 的直徑, cd ab()若adcd,求證: ad平面 ceo;()若cdceab1
7、,求直線be 與平面 ade 所成角的正弦值19 (12 分)某電器公司的市場研究人員為了解公司的經營狀況,對該公司最近六個月內的市場占有率進行了統(tǒng)計,結果如表所示:年份2020 年2021 年月份9 月10 月11 月12 月1 月2 月月份代碼x123456市場占有率 y(%)111316152021()用相關系數說明月度市場占有率y 與月份代碼x 之間的關系是否可用線性回歸模型擬合?()求y 關于 x 的線性回歸方程,并預測何時該種產品的市場占有率超過30%?()根據市場供需情況統(tǒng)計,得到該公司產品2020 年的平均月產量x(單位:萬件)的分布列為x11.2p0.60.42020 年的該
8、公司產品的平均市場價格y(單位:萬元 /件)對應的概率分布為p(y)第5頁(共 23頁)假設生產每件產品的每月固定成本為200 萬元,求該產品平均每月利潤的分布列和數學期望參考數據:,參考公式:相關系數,回歸直線方程為,其中:,20 (12 分)函數f(x) xlogax(a0,a1) ()當a4 時,求證:函數g(x) f( x) 1 有兩個零點;()若ae,求證: af( x) e021 (12 分)已知橢圓c:1(ab0)和圓 o:x2+y21c 的焦距為,過 c 的右頂點作圓o 的切線,切線長為()求橢圓c 的方程;()設圓o 的切線 l 與橢圓 c 交于 a,b 兩點,求 oab 面
9、積的最大值(二)選考題:共10 分請考生在第22,23 題中任選一題作答,如果多做,則按所做的第一題計分,作答時,請用2b 鉛筆在答題卡上將所選題號后的方框涂黑。選修 4-4:坐標系與參數方程 22 (10 分)以坐標原點o 為極點, x 軸的正半軸為極軸建立極坐標系,曲線c 的極坐標方程為 2 2a sin +a230,直線 l 的極坐標方程為 ( r) 第6頁(共 23頁)()求曲線c 的參數方程,若曲線c 過原點 o,求實數a 的值;()當a1 時,直線l 與曲線 c 交于 a,b 兩點,求 |ab|選修 4-5:不等式選講23設函數f(x) |x+1|+|xa|()當a3 時,求不等式
10、f(x) 3x+1 的解集;()若f(x) 2a3 對任意 x r 恒成立,求實數a的取值范圍第7頁(共 23頁)2021 年超級全能生高考數學聯(lián)考試卷(理科)(5 月份) (丙卷)參考答案與試題解析一、選擇題:本題共12 小題,每小題5 分,滿分60 分.在每小題給出的四個選項中,只有一項是符合題目要求的.1 ( 5 分)已知集合ay|y,bx|y,則 a b()a (0,+)b0,+)c (1,+)d1,+)【解答】 解:因為ay|y 0,+) ,bx|y(,11,+) ,所以 ab1,+) 故選: d2 ( 5 分)復數z 滿足 z( 1+i) ( 1i)2,則 z 的虛部為()a 2i
11、b 2c2d2i【解答】 解: z( 1+i) (1i)2( 1+i) (1 2i 1)( 1+i) ( 2i) 22i,故 z 的虛部為 2,故選: b3 ( 5 分)若 aln0.4,b0.23,clog23,則 a,b,c 的大小關系正確的是()abacbacbcbc adab c【解答】 解: aln0.4ln10,b 0.23 0.008,clog23log221,故選: d4 ( 5 分)隨著我國智慧城市建設加速和園區(qū)信息化發(fā)展趨向成熟,智慧園區(qū)建設需求將持續(xù)增大,市場規(guī)?;謴洼^高增長態(tài)勢,未來發(fā)展空間廣闊下面是20172020 年中國智慧園區(qū)市場規(guī)模統(tǒng)計表,則下列結論錯誤的是()
12、年份2017201820192020規(guī)模(億元)1888210122702417第8頁(共 23頁)a2017 年到 2020 年我國智慧園區(qū)市場規(guī)模逐年增長b2017 年到 2020 年我國智慧園區(qū)市場規(guī)模增長率逐年增大c2017 年到 2020 年我國智慧園區(qū)市場規(guī)模的平均值約為2169 億元d2017 年到 2020 年我國智慧園區(qū)市場規(guī)模與年份成正相關【解答】 解:對于 a,由表中的數據可以看出,2017 年到 2020 年我國智慧園區(qū)市場規(guī)模逐年增長,故選項a 正確;對于 b,2017 年到 2018 年市場規(guī)模增長率為,2018 年到 2019 年場規(guī)模增長率為,因為 8%11.3
13、%,故選項b 錯誤;對 于c , 2017年 到2020年 我 國 智 慧 園 區(qū) 市 場 規(guī) 模 的 平 均 值 為億元,故選項c 正確;對于 d,2017 年到 2020 年我國智慧園區(qū)市場規(guī)模與隨著年份的增大而增大,故兩者呈正相關,故選項d 正確故選: b5 ( 5 分)數列 an滿足 am+nam+an(m,n n*) ,a1 1,a20+a22+a24+a40()a300b330c630d600【解答】 解:數列 an滿足 am+nam+an(m,n n*) ,當 m1 時,則 an+1an1,數列 an是首項為1,公差為1 的等差數列,ana1+(n 1)d1+n1n,a20+a2
14、2+a24+a4020+22+24+?+40,故選: b6 ( 5 分)在 abc 中,3,d 是 be 上的點,若x+,則實數x 的值為()第9頁(共 23頁)abcd【解答】 解:3, x+, x+x+,b,d,e 三點共線, x+1, x故選: d7 ( 5 分)若過函數f(x) lnx 2x 圖象上一點的切線與直線y2x+1 平行,則該切線方程為()a2xy10b2x y2ln2+1 0c2xy 2ln210d2x+y2ln21 0【解答】 解:由題意,求導函數可得y2,切線與直線y2x+1 平行,22,x,切點坐標為(, 2ln2) ,過點 p 且與直線 y2x+1 平行的切線方程為
15、y+2ln2+2(x) ,即 2xy2ln21 0故選: c8 ( 5 分)如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()第10頁(共 23頁)ab4cd8【解答】 解:由三視圖還原原幾何體如圖,該幾何體是半徑為2 的半球內部挖去一個圓錐,圓錐的底面與半球的大圓面重合,圓錐的高為半球的半徑則該幾何體的體積v故選: c9 (5 分)陽春三月, 春暖花開, 某學校開展 “學雷鋒踐初心向建黨百年獻禮”志愿活動 現有 6 名男同學和4 名女同學,分派到4 個“學雷鋒志愿服務站”參加志愿活動,若每個志愿服務站至少有男、女同學各1 名,共有不同的分配方案數為()a
16、65b1560c25920d37440【解答】 解:先把女同學分到4 個學雷鋒志愿服務站有a 種,然后把 6 個男同學分到4個學雷鋒志愿服務站,每站至少一個,有 2 種分配方案, 每個志愿服務站男生數為1、1、1、2,有 c?a 種方法,每個志愿服務站男生數為1、 1、2、2,有cc a 種方法,則共有 a ( c?a +c c a ) 37440 種方案故選: d第11頁(共 23頁)10 (5 分)雙曲線1(a0,b 0)的左、右焦點分別為f1,f2,若 p 為其上一點,且 |pf1|2|pf2|, f1pf2,則雙曲線的離心率為()ab2cd3【解答】 解:雙曲線1(a 0,b0)的左、
17、右焦點分別為f1, f2,p 為其上一點,且|pf1|2|pf2|,由雙曲線定義知|pf1|4a,|pf2|2a,|f1f2|2c, f1pf2,( 2c)2( 2a)2+( 4a)22,解得 c,e故選: c11 (5 分)如圖,四邊形abcd, a1add1,c1cdd1均為正方形動點e 在線段 a1c1上,f,g, m 分別是 ad,be,cd 的中點,則下列選項正確的是()第12頁(共 23頁)agmcebbm平面 cc1fc存在點 e,使得平面bef平面 cc1d1dd存在點e,使得平面bef平面 aa1c1c【解答】 解:對于a,取 bc 的中點 n,連接 cg,因為 g 是 be
18、 的中點,所以gn ce,若 gmce,則 gmgn,這與 gmgng 矛盾,故選項a 錯誤;對于 b,因為平面abcd平面 cc1d1d,平面 abcd平面 cc1d1d cd,c1ccd,所以 c1c平面 abcd,又 bm? 平面 abcd,所以 cc1bm,又 bmcf ,且 cc1cfc,cc1,cf? 平面 cc1f,則 bm平面 cc1f,故選項b 正確;對于 c,因為直線bf 與平面cc1d1d 有交點,所以不存在點e,使得平面bef平面cc1d1d,故選項c 錯誤;對于 d,連接 bd,因為四邊形abcd 為正方形,所以acbd ,因為cc1平面abcd,cc1? 平面acc
19、1a1,所以平面abcd平面acc1a1,又平面 abcd平面 aa1c1cac,acbd,則 bd平面 acc1a1,記 acbdh,則 bh平面 aa1c1c,且 h 不在平面 bef,所以不存在點e,使得平面bef平面 aa1c1c,故選項d 錯誤故選: b第13頁(共 23頁)12 (5 分)已知函數f(x)3x+1,且 f(a2) +f(3a4) 2,則實數a 的取值范圍是()a ( 4,1)b ( 3,2)c (0, 5)d ( 1, 4)【解答】 解:令 g(x)3x,則 f(x) g(x)+1,f(a2) +f(3a4) 2,g(a2)+g(3a4) 0,g( x)3( x)(
20、3x) ,g(x)是 r 上的奇函數,g(a2)+g(3a4) 0 可化為 g( a2) g( 43a) ,又 g(x)3x13x 在 r 上是減函數,a243a,解得, 4a1,故選: a二、填空題:本題共4 小題,每小題5 分,共 20 分。13 (5 分)若 x,y 滿足約束條件,則 z2x+y 的最大值為4【解答】 解:由約束條件作出可行域如圖,第14頁(共 23頁)聯(lián)立,解得 a() 化 z2x+y為 y 2x+z,由圖可知,當直線y 2x+z 過 a 時,直線在 y 軸上的截距最大,z 有最大值為故答案為: 414 (5 分)設正項等比數列an的前 n 項和為 sn,且 a52a3
21、+8a1,s430,則 a664【解答】 解:設等比數列 an的共比為q(q0) ,由 a52a3+8a1,得 a1q42a1q2+8a1,即 q42q280(q2+2) (q24) 0,解得 q2 或 q 2(舍去),又 s4 30,則30,解得 a12,所以 a6 22526 64故答案為: 6415 (5 分)已知函數f(x) sin( x+) +在0,m上恰有10個零點,則m 的取值范圍是,)【解答】 解: f(x) sin(x+)+sin(x+) +1cos( x+) 2sin(x) ,f(x) 0? 2sin(x) 0,由 sin(x) 0,得 xk (k z) ,即 xk +(k
22、 z) ,f(x)在 0,m上恰有 10 個零點,第15頁(共 23頁)sin(x) 0 在0,m上恰有 10 個解,9 m10 ,解得m,故答案為: ,) 16 (5 分)函數 f(x) x2lnx(a r)在 內不存在極值點,則a 的取值范圍是【解答】 解:函數f(x) x2lnx( a r)在 內不存在極值點,函數 f(x)在 內單調遞增或單調遞減,f( x) 0 或 f(x) 0 在內恒成立,f( x),令 g(x) 4x2xa,二次函數的對稱軸為,當 f(x) 0 時,需滿足,即 a,當 f(x) 0 時,需滿足3a0,即 a3,綜上所述, a 的取值范圍為故答案為:三、解答題:共7
23、0 分.解答應寫出文字說明、證明過程或演算步驟。第1721 題為必考題,每個試題考生都必須作答。第22,23 題為選考題,考生根據要求作答.(一)必考題:共60 分.17 (12 分) abc 的內角 a,b,c 的對邊分別為a,b, c,已知 atanb4bsin(b+c) ()求cosb;()若ab4,bc 3,d 為 ac 上一點,且ad2dc,求 bd【解答】 解: ()因為atanb4bsin( b+c) 4bsin( a) 4bsina,所以 asinb4bsinacosb,由正弦定理可得sinasinb4sinasinbcosb,因為 sinasinb0,第16頁(共 23頁)所
24、以可得cosb()因為cosb,ab4, bc3,所以由余弦定理可得ac,因為 ad2dc,所以 ad,dc,設 bdx,則+0,解得 x,即 bd18 (12 分)如圖,在圓柱oo1中, ce 是圓柱的一條母線,abcd 是圓 o 的內接四邊形,ab 是圓 o 的直徑, cd ab()若adcd,求證: ad平面 ceo;()若cdceab1,求直線be 與平面 ade 所成角的正弦值【解答】 解: ()證明:因為cdab,所以adbc又因為adcd,所以adcdbc因為ab 是圓o 的直徑,連接od,所以 aod doc cob60,所以 oad , ocd, obc 均為正三角形,所以
25、dao cob60,所以adoc又因為oc? 平面ceo,ad? 平面ceo,所以ad平面ceo第17頁(共 23頁)()以o 為坐標原點,分別以ca,cb,ce 所在直線為x,y, z 軸,建立如圖所示的空間直角坐標系c xyz因為cdab,所以,則點所以設平面ade 的法向量為,則即令,可得設直線be 與平面ade 所成角為 ,所以直線be 與平面ade 所成角的正弦值為19 (12 分)某電器公司的市場研究人員為了解公司的經營狀況,對該公司最近六個月內的市場占有率進行了統(tǒng)計,結果如表所示:年份2020 年2021 年月份9 月10 月11 月12 月1 月2 月月份代碼x123456市場
26、占有111316152021第18頁(共 23頁)率 y(%)()用相關系數說明月度市場占有率y 與月份代碼x 之間的關系是否可用線性回歸模型擬合?()求y 關于 x 的線性回歸方程,并預測何時該種產品的市場占有率超過30%?()根據市場供需情況統(tǒng)計,得到該公司產品2020 年的平均月產量x(單位:萬件)的分布列為x11.2p0.60.42020 年的該公司產品的平均市場價格y(單位:萬元 /件)對應的概率分布為p(y)假設生產每件產品的每月固定成本為200 萬元,求該產品平均每月利潤的分布列和數學期望參考數據:,參考公式:相關系數,回歸直線方程為,其中:,【解答】 解: ()因為r第19頁(
27、共 23頁),所以兩變量之間具有較強的線性相關關系,故可以用線性回歸模型擬合兩變量之間的關系;()由題意可得,又,所以1623,59,故 y 關于 x 的線性回歸方程為,令30,即 2x+930,解得 x10.5,又 x n,所以 x11,故從 2021 年 7 月開始,該種產品的市場占有率超過30%;()設該產品平均每月利潤為z 萬元,則 z 的可能取值為2800,3300,3400, 4000,故 p(z2800) 0.60.8 0.48,p(z3300) 0.6 0.20.12,p(z3400) 0.4 0.80.32,p(z4000) 0.4 0.20.08,所以 z 的分布列為:z2
28、800330034004000p0.480.120.320.08故 e(z) 28000.48+3300 0.12+3400 0.32+40000.083148 萬元20 (12 分)函數f(x) xlogax(a0,a1) ()當a4 時,求證:函數g(x) f( x) 1 有兩個零點;()若ae,求證: af( x) e0【解答】 證明: ()當a4 時, g(x) f(x) 1 xlog4x1(x0) ,第20頁(共 23頁)則,當時, g( x) 0,則 g(x)單調遞減,當時, g(x) 0,則 g(x)單調遞增,又 g(1) 0,g()0,所以存在使得 g(x0) 0,則函數 g(
29、x)存在兩個零點x0,1,所以函數g(x) f(x) 1 有兩個零點;()當ae,af(x) e 0等價于,由題意可知,令 f(x) 0,可得,當時, f(x) 0,則 f(x)單調遞減,當時, f(x) 0,則 f(x)單調遞增,所以當時, f(x)取得最小值,且,由題意,只需證明+ln(lna),令 tlna(t1) ,則 aet,則只需證明,即 1+lnt,令 (t) 1+lnt,t1,故只需證明 (t) 0(t1)即可,則 (t),當 t1 時, et1t0,故 ( t) 0,所以 (t)在 1,+)上單調遞增,因為 t1,所以 (t) (1) 0,故 af(x) e0 成立第21頁(共 23頁)21 (12 分)已知橢圓c:1(ab0)和圓 o:x2+y21c 的焦距為,過 c 的右頂點作圓o 的切線,切線長為()求橢圓c 的方程;()設圓o 的切線 l 與橢圓 c 交于 a,b 兩點,求 oab 面積的最大值【解答】 解: ()設橢圓的半焦距為c,由題意可得,解得 a2,b,所以橢圓c 的方程為+1()當切線l 的斜率不存在時,直線l 的方程為x 1,|ab|2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6 徽 章(教學設計)蘇教版二年級下冊綜合實踐活動
- 大型公共建筑合同投標保函范本
- 分期房產合同范本
- 13《 畫楊桃》教學設計2023-2024學年統(tǒng)編版語文二年級下冊
- 同城小店轉讓合同范本
- 企業(yè)模具合同范本
- 5這些事我來做 第一課時(教學設計)-部編版道德與法治四年級上冊
- 耐火原料采購合同范本
- 8《網絡新世界》(第一課時)教學設計-2024-2025學年道德與法治四年級上冊統(tǒng)編版
- 勞務合同范本 貨運
- 小學道德與法治課堂生活化教學的策略講座稿
- 大學生返家鄉(xiāng)志愿服務證明
- (新版)網絡攻防知識考試題庫(含答案)
- 建筑工程資料檔案盒側面標簽
- 工程設計變更工程量計算表
- 動力工程及工程熱物理專業(yè)英語課件
- 幼兒系列故事繪本課件達芬奇想飛-
- 出納收入支出日記賬Excel模板
- 給水排水用格柵除污機通用技術條件
- 一年級下冊綜合實踐活動課件-身邊的水果和蔬菜全國通用16張
- 市政工程主要施工機械設備
評論
0/150
提交評論