第5講二次函數(shù)冪函數(shù)_第1頁
第5講二次函數(shù)冪函數(shù)_第2頁
第5講二次函數(shù)冪函數(shù)_第3頁
第5講二次函數(shù)冪函數(shù)_第4頁
第5講二次函數(shù)冪函數(shù)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第5講二次函數(shù)與冪函數(shù)基礎梳理1冪函數(shù)(1)冪函數(shù)的定義一般地,形如 的函數(shù)稱為冪函數(shù),其中x是自變量,為常數(shù)(2)常見的5種冪函數(shù)的圖象yx(3)常見的5種冪函數(shù)的性質函數(shù)特征性質yxyx2yx3yx1定義域rrrx|xr且x0值域r 0,)r0,)奇偶性奇偶奇非奇非偶奇單調性增(,0減,0,)增增增(,0)減,(0,)減定點(0,0),(1,1)(1,1)0,)y|yr且y02.二次函數(shù) (1)二次函數(shù)的定義 形如 的函數(shù)叫做二次函數(shù) (2)二次函數(shù)的三種常見解析式 一般式:f(x)ax2bxc(a0); 頂點式:f(x)a(xm)2n(a0); 兩根式:f(x)a(xx1)(xx2)(a

2、0)f(x)ax2bxc(a0)(3)二次函數(shù)的圖象和性質a0a0在r上恒成立,則實數(shù)a的取值范圍是_解析不等式x2ax2a0在r上恒成立,即(a)28a0,0a1或xg(x); 當x1或x1時,f(x)g(x); 當1x1且x0時,f(x)g(x)請先暫停,完成題目后繼續(xù)觀看!請先暫停,完成題目后繼續(xù)觀看!【例2】 (2013鎮(zhèn)海中學階段測試)已知二次函數(shù)f(x)同時滿足下列條件:f(1x)f(1x);f(x)的最大值為15;f(x)0的兩根的立方和等于17,求f(x)的解析式考點二求二次函數(shù)的解析式考點二求二次函數(shù)的解析式【訓練2】 已知二次函數(shù)f(x)滿足f(2)1,f(1)1,且f(x

3、)的最大值是8.試確定此二次函數(shù)請先暫停,完成題目后繼續(xù)觀看!請先暫停,完成題目后繼續(xù)觀看!【訓練2】 已知二次函數(shù)f(x)滿足f(2)1,f(1)1,且f(x)的最大值是8.試確定此二次函數(shù)【例3】 (2013臨沂月考)已知f(x)4x24ax4aa2在區(qū)間0,1內有最大值5,求a的值及函數(shù)表達式f(x)考點三二次函數(shù)在閉區(qū)間上的最大考點三二次函數(shù)在閉區(qū)間上的最大(小小)值值【訓練3】 函數(shù)f(x)x24x1在區(qū)間t,t1(tr)上的最大值為g(t)(1)求g(t)的解析式;(2)求g(t)的最大值解(1)f(x)x24x1(x2)23.對稱軸x2.當t12,即t1時,函數(shù)f(x)在區(qū)間t,

4、t1上為增函數(shù), g(t)f(t1)t22t2;當t2t1,即1t2時,g(t)f(2)3;請先暫停,完成題目后繼續(xù)觀看!請先暫停,完成題目后繼續(xù)觀看!熱點突破5二次函數(shù)中的分類討論思想【真題探究】 (2012杭州外國語學校測試)設函數(shù)f(x)ax22x2, 對于滿足1x4的一切x值都有f(x)0,求實數(shù)a的取值范圍請先暫停,完成題目請先暫停,完成題目1,2,4后繼續(xù)觀看!后繼續(xù)觀看!2(2012江蘇)已知函數(shù)f(x)x2axb(a,br)的值域為0,),若關于x的不等式f(x)c的解集為(m,m6),則實數(shù)c的值為_4(2010廣東)已知函數(shù)f(x)對任意實數(shù)x均有f(x)kf(x2),其中k為負數(shù),且f(x)在區(qū)間0,2上有表達式f(x)x(x2)(1)求f(1),f(2.5)的值;(2)寫出f(x)在3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論