




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、閉區(qū)間上連續(xù)函數(shù)的性質(zhì)一、最大值和最小值定理一、最大值和最小值定理定義定義: :.)()()()()()()(,),(0000值值小小上的最大上的最大在區(qū)間在區(qū)間是函數(shù)是函數(shù)則稱則稱都有都有使得對于任一使得對于任一如果有如果有上有定義的函數(shù)上有定義的函數(shù)對于在區(qū)間對于在區(qū)間ixfxfxfxfxfxfixixxfi 定理定理1(1(最大值和最小值定理最大值和最小值定理) ) 在閉區(qū)間上連續(xù)的函數(shù)在閉區(qū)間上連續(xù)的函數(shù)一定有最大值和最小值一定有最大值和最小值. .ab2 1 xyo)(xfy ).()(),()(,)(2121xffxffbaxbabacxf 有有使得使得則則若若注意注意: :1.若
2、區(qū)間是開區(qū)間若區(qū)間是開區(qū)間, 定理不一定成立定理不一定成立; 2.若區(qū)間內(nèi)有間斷點(diǎn)若區(qū)間內(nèi)有間斷點(diǎn), 定理不一定成立定理不一定成立.21, 310,)(xxxxxf有間斷點(diǎn)有間斷點(diǎn)x=1,最小值為最小值為0,無最大值。,無最大值。xyo)(xfy 1 2定理定理2(2(有界性定理有界性定理) ) 在閉區(qū)間上連續(xù)的函數(shù)一定在該區(qū)在閉區(qū)間上連續(xù)的函數(shù)一定在該區(qū)間上有界間上有界. .證證,)(上連續(xù)上連續(xù)在在設(shè)函數(shù)設(shè)函數(shù)baxf,bax ,)(mxfm 有有.,)(上有界上有界在在函數(shù)函數(shù)baxf二、介值定理二、介值定理定義定義: :.)(, 0)(000的零點(diǎn)的零點(diǎn)稱為函數(shù)稱為函數(shù)則則使使如果如果
3、xfxxfx .),(0)(內(nèi)至少存在一個(gè)實(shí)根內(nèi)至少存在一個(gè)實(shí)根在在即方程即方程baxf ab3 2 1 幾何解釋幾何解釋:.,)(軸至少有一個(gè)交點(diǎn)軸至少有一個(gè)交點(diǎn)線弧與線弧與則曲則曲軸的不同側(cè)軸的不同側(cè)端點(diǎn)位于端點(diǎn)位于的兩個(gè)的兩個(gè)連續(xù)曲線弧連續(xù)曲線弧xxxfy xyo)(xfy 證證,)()(cxfx 設(shè)設(shè),)(上連續(xù)上連續(xù)在在則則bax cafa )()( 且且cbfb )()( , 0)()( ba 由零點(diǎn)定理由零點(diǎn)定理,使使),(ba , 0)( , 0)()( cf 即即.)(cf 幾何解釋幾何解釋:mbcamab1 2 3 2x1xxyo)(xfy .)(至少有一個(gè)交點(diǎn)至少有一個(gè)交
4、點(diǎn)直線直線與水平與水平連續(xù)曲線弧連續(xù)曲線弧cyxfy 推論推論 在閉區(qū)間上連續(xù)的函數(shù)必取得介于最大在閉區(qū)間上連續(xù)的函數(shù)必取得介于最大值值 與最小值與最小值 之間的任何值之間的任何值. .mm例例1 1.)1 , 0(01423至少有一根至少有一根內(nèi)內(nèi)在區(qū)間在區(qū)間證明方程證明方程 xx證證, 14)(23 xxxf令令,1 , 0)(上連續(xù)上連續(xù)在在則則xf, 01)0( f又又, 02)1( f由零點(diǎn)定理由零點(diǎn)定理,使使),(ba , 0)( f, 01423 即即.)1 , 0(01423 內(nèi)至少有一根內(nèi)至少有一根在在方程方程 xx例例2 2.)(),(.)(,)(,)( fbabbfaaf
5、baxf使得使得證明證明且且上連續(xù)上連續(xù)在區(qū)間在區(qū)間設(shè)函數(shù)設(shè)函數(shù)證證,)()(xxfxf 令令,)(上連續(xù)上連續(xù)在在則則baxfaafaf )()(而而, 0 由零點(diǎn)定理由零點(diǎn)定理,使使),(ba , 0)()( ffbbfbf )()(, 0 .)( f即即三、小結(jié)三、小結(jié)四個(gè)定理四個(gè)定理有界性定理有界性定理;最值定理最值定理;介值定理介值定理;根的存在性定理根的存在性定理.注意注意1閉區(qū)間;閉區(qū)間; 2連續(xù)函數(shù)連續(xù)函數(shù)這兩點(diǎn)不滿足上述定理不一定成立這兩點(diǎn)不滿足上述定理不一定成立解題思路解題思路1.1.直接法直接法:先利用最值定理先利用最值定理,再利用介值定理再利用介值定理;2.2.輔助函數(shù)
6、法輔助函數(shù)法: :先作輔助函數(shù)先作輔助函數(shù)f(x),再利用零點(diǎn)定理再利用零點(diǎn)定理;思考題思考題下述命題是否正確?下述命題是否正確? 如如果果)(xf在在,ba上上有有定定義義,在在),(ba內(nèi)內(nèi)連連續(xù)續(xù),且且0)()( bfaf,那那么么)(xf在在),(ba內(nèi)內(nèi)必必有有零零點(diǎn)點(diǎn).思考題解答思考題解答不正確不正確.例函數(shù)例函數(shù) 0, 210,)(xxexf)(xf在在)1 , 0(內(nèi)連續(xù)內(nèi)連續(xù),. 02)1()0( ef但但)(xf在在)1 , 0(內(nèi)內(nèi)無無零零點(diǎn)點(diǎn).一、一、 證明方程證明方程bxax sin,其中,其中0,0 ba,至,至少有一個(gè)正根,并且它不超過少有一個(gè)正根,并且它不超過ba . .二、二、 若若)(xf在在,ba上連續(xù),上連續(xù),bxxxan 21 則在則在,1nxx上必有上必有 ,使,使 nxfxfxfxfn)(.)()()(21 . .三、三、 設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年建筑材料采購銷售合同范本
- 2025年氟喹諾酮項(xiàng)目發(fā)展計(jì)劃
- 2025新商業(yè)租賃合同專業(yè)版(合同版本)
- 2025年合同法重要條款「詳細(xì)版」
- 工程項(xiàng)目合伙合同協(xié)議
- 農(nóng)產(chǎn)品電商品牌塑造預(yù)案
- 2025光伏項(xiàng)目合同能源管理合作框架
- 股份制改革關(guān)鍵問題分析解決方案
- 電信行業(yè)智能化寬帶網(wǎng)絡(luò)與服務(wù)方案
- 2025咖啡店加盟合同
- 2024年中國電信集團(tuán)有限公司招聘考試真題
- 《中醫(yī)體重管理臨床指南》
- 2025湖南新華書店集團(tuán)校園招聘85人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 醫(yī)院危化品知識培訓(xùn)課件
- 兒童營養(yǎng)及營養(yǎng)性疾病
- 專業(yè)設(shè)置可行性報(bào)告
- QC080000培訓(xùn)講義課件
- 病歷書寫規(guī)范細(xì)則(2024年版)
- 華南理工大學(xué)《統(tǒng)計(jì)學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- GB/T 29468-2024潔凈室及相關(guān)受控環(huán)境圍護(hù)結(jié)構(gòu)夾芯板
- 爐襯材料與結(jié)構(gòu)的改進(jìn)
評論
0/150
提交評論