近世代數(shù)期末考試試卷及答案_第1頁
近世代數(shù)期末考試試卷及答案_第2頁
近世代數(shù)期末考試試卷及答案_第3頁
近世代數(shù)期末考試試卷及答案_第4頁
近世代數(shù)期末考試試卷及答案_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 一、單項(xiàng)選擇題(本大題共5小題,每小題3分,共15分)在每小題列出的四個(gè)備選項(xiàng)中只有一個(gè)是符合題目要求的,請(qǐng)將其代碼填寫在題后的括號(hào)內(nèi)。錯(cuò)選、多選或未選均無分。1、設(shè)G 有6個(gè)元素的循環(huán)群,a是生成元,則G的子集( )是子群。A、 B、 C、 D、2、下面的代數(shù)系統(tǒng)(G,*)中,( )不是群 A、G為整數(shù)集合,*為加法 B、G為偶數(shù)集合,*為加法 C、G為有理數(shù)集合,*為加法 D、G為有理數(shù)集合,*為乘法 3、在自然數(shù)集N上,下列哪種運(yùn)算是可結(jié)合的?( )A、a*b=a-bB、a*b=maxa,b C、 a*b=a+2b D、a*b=|a-b|4、設(shè)、是三個(gè)置換,其中,則( )A、 B、 C

2、、 D、5、任意一個(gè)具有2個(gè)或以上元的半群,它( )。A、不可能是群B、不一定是群C、一定是群 D、 是交換群6、12階有限群的任何子群一定不是( )。A、2階B、3 階 C、4 階 D、 5 階7、設(shè)G是群,G有( )個(gè)元素,則不能肯定G是交換群。A、4個(gè) B、5個(gè) C、6個(gè) D、7個(gè)8、有限布爾代數(shù)的元素的個(gè)數(shù)一定等于( )。A、偶數(shù) B、奇數(shù) C、4的倍數(shù) D、2的正整數(shù)次冪9、若I,J均是環(huán)A的理想,則( )不一定是A的理想。A、I+J B、IJ C、IJ D、IJ10、中元素(123)的中心化子有( )A、(1),(123),(132) B、(12),(13),(23) C、(1),

3、(123) D、S3中的所有元素二、填空題(本大題共10小題,每空3分,共30分)請(qǐng)?jiān)诿啃☆}的空格中填上正確答案。錯(cuò)填、不填均無分。1、凱萊定理說:任一個(gè)子群都同一個(gè) 同構(gòu)。2、一個(gè)有單位元的無零因子 稱為整環(huán)。3、已知群中的元素的階等于30,則的階等于 。4、a的階若是一個(gè)有限整數(shù)n,那么G與 同構(gòu)。5、如果是與間的一一映射,是的一個(gè)元,則 。3、區(qū)間1,2上的運(yùn)算的單位元是 。4、交換群G中|a|=6,|x|=8,則|ax|= 。5、環(huán)Z8的零因子有 。三、解答題(本大題共3小題,每小題10分,共30分)1、設(shè)集合A=1,2,3G是A上的置換群,H是G的子群,H=I,(1 2),寫出H的所

4、有陪集。2、設(shè)E是所有偶數(shù)做成的集合,“”是數(shù)的乘法,則“”是E中的運(yùn)算,(E,)是一個(gè)代數(shù)系統(tǒng),問(E,)是不是群,為什么?3、a=493, b=391, 求(a,b), a,b 和p, q。四、證明題(本大題共2小題,第1題10分,第2小題15分,共25分)1、若<G,*>是群,則對(duì)于任意的a、bG,必有惟一的xG使得a*xb。2、設(shè)m是一個(gè)正整數(shù),利用m定義整數(shù)集Z上的二元關(guān)系:ab當(dāng)且僅當(dāng)mab。近世代數(shù)模擬試題三一、單項(xiàng)選擇題(本大題共5小題,每小題3分,共15分)在每小題列出的四個(gè)備選項(xiàng)中只有一個(gè)是符合題目要求的,請(qǐng)將其代碼填寫在題后的括號(hào)內(nèi)。錯(cuò)選、多選或未選均無分。1

5、、6階有限群的任何子群一定不是( )。A、2階B、3 階 C、4 階 D、 6 階2、設(shè)G是群,G有( )個(gè)元素,則不能肯定G是交換群。A、4個(gè) B、5個(gè) C、6個(gè) D、7個(gè)3、有限布爾代數(shù)的元素的個(gè)數(shù)一定等于( )。A、偶數(shù) B、奇數(shù) C、4的倍數(shù) D、2的正整數(shù)次冪4、下列哪個(gè)偏序集構(gòu)成有界格( )A、(N,) B、(Z,) C、(2,3,4,6,12,|(整除關(guān)系) D、 (P(A),)5、設(shè)S3(1),(12),(13),(23),(123),(132),那么,在S3中可以與(123)交換的所有元素有( )A、(1),(123),(132) B、12),(13),(23) C、(1),

6、(123) D、S3中的所有元素二、填空題(本大題共10小題,每空3分,共30分)請(qǐng)?jiān)诿啃☆}的空格中填上正確答案。錯(cuò)填、不填均無分。1、群的單位元是-的,每個(gè)元素的逆元素是-的。2、如果是與間的一一映射,是的一個(gè)元,則-。3、區(qū)間1,2上的運(yùn)算的單位元是-。4、可換群G中|a|=6,|x|=8,則|ax|=。5、環(huán)Z8的零因子有 -。6、一個(gè)子群H的右、左陪集的個(gè)數(shù)-。7、從同構(gòu)的觀點(diǎn),每個(gè)群只能同構(gòu)于他/它自己的-。8、無零因子環(huán)R中所有非零元的共同的加法階數(shù)稱為R的-。9、設(shè)群中元素的階為,如果,那么與存在整除關(guān)系為-。三、解答題(本大題共3小題,每小題10分,共30分)1、用2種顏色的珠

7、子做成有5顆珠子項(xiàng)鏈,問可做出多少種不同的項(xiàng)鏈?2、S1,S2是A的子環(huán),則S1S2也是子環(huán)。S1+S2也是子環(huán)嗎?3、設(shè)有置換,。1求和;2確定置換和的奇偶性。四、證明題(本大題共2小題,第1題10分,第2小題15分,共25分)1、一個(gè)除環(huán)R只有兩個(gè)理想就是零理想和單位理想。2、M為含幺半群,證明b=a-1的充分必要條件是aba=a和ab2a=e。近世代數(shù)模擬試題一 參考答案一、單項(xiàng)選擇題。1、C;2、D;3、B;4、C;5、D;二、填空題(本大題共10小題,每空3分,共30分)。1、;2、單位元;3、交換環(huán);4、整數(shù)環(huán);5、變換群;6、同構(gòu);7、零、-a ;8、S=I或S=R ;9、域;三

8、、解答題(本大題共3小題,每小題10分,共30分)1、解:把和寫成不相雜輪換的乘積: 可知為奇置換,為偶置換。 和可以寫成如下對(duì)換的乘積: 2、解:設(shè)A是任意方陣,令,則B是對(duì)稱矩陣,而C是反對(duì)稱矩陣,且。若令有,這里和分別為對(duì)稱矩陣和反對(duì)稱矩陣,則,而等式左邊是對(duì)稱矩陣,右邊是反對(duì)稱矩陣,于是兩邊必須都等于0,即:,所以,表示法唯一。3、答:(,)不是群,因?yàn)橹杏袃蓚€(gè)不同的單位元素0和m。四、證明題(本大題共2小題,第1題10分,第2小題15分,共25分)1、對(duì)于G中任意元x,y,由于,所以(對(duì)每個(gè)x,從可得)。2、證明在F里有意義,作F的子集顯然是R的一個(gè)商域 證畢。近世代數(shù)模擬試題二 參

9、考答案一、單項(xiàng)選擇題(本大題共5小題,每小題3分,共15分)。1、C;2、D;3、B;4、B;5、A;二、填空題(本大題共10小題,每空3分,共30分)。1、變換群;2、交換環(huán);3、25;4、模n乘余類加群;5、2;6、一一映射;7、不都等于零的元;8、右單位元;9、消去律成立;10、交換環(huán);三、解答題(本大題共3小題,每小題10分,共30分)1、解:H的3個(gè)右陪集為:I,(1 2),(1 2 3 ),(1 3),(1 3 2 ),(2 3 )H的3個(gè)左陪集為:I,(1 2) ,(1 2 3 ),(2 3),(1 3 2 ),(1 3 )2、答:(E,)不是群,因?yàn)椋‥,)中無單位元。3、解

10、方法一、輾轉(zhuǎn)相除法。列以下算式:a=b+102b=3×102+85102=1×85+17 由此得到 (a,b)=17, a,b=a×b/17=11339。然后回代:17=102-85=102-(b-3×102)=4×102-b=4×(a-b)-b=4a-5b.所以 p=4, q=-5.四、證明題(本大題共2小題,第1題10分,第2小題15分,共25分)1、證明 設(shè)e是群<G,*>的幺元。令xa1*b,則a*xa*(a1*b)(a*a1)*be*bb。所以,xa1*b是a*xb的解。若x¢G也是a*xb的解,則x&

11、#162;e*x¢(a1*a)*x¢a1*(a*x¢)a1*bx。所以,xa1*b是a*xb的惟一解。2、容易證明這樣的關(guān)系是Z上的一個(gè)等價(jià)關(guān)系,把這樣定義的等價(jià)類集合記為Zm,每個(gè)整數(shù)a所在的等價(jià)類記為a=xZ;mxa或者也可記為,稱之為模m剩余類。若mab也記為ab(m)。當(dāng)m=2時(shí),Z2僅含2個(gè)元:0與1。近世代數(shù)模擬試題三 參考答案一、單項(xiàng)選擇題(本大題共5小題,每小題3分,共15分)在每小題列出的四個(gè)備選項(xiàng)中只有一個(gè)是符合題目要求的,請(qǐng)將其代碼填寫在題后的括號(hào)內(nèi)。錯(cuò)選、多選或未選均無分。1、C;2、C;3、D;4、D;5、A;二、填空題(本大題共10小題

12、,每空3分,共30分)請(qǐng)?jiān)诿啃☆}的空格中填上正確答案。錯(cuò)填、不填均無分。1、唯一、唯一;2、;3、2;4、24;5、;6、相等;7、商群;8、特征;9、;三、解答題(本大題共3小題,每小題10分,共30分)1、解 在學(xué)群論前我們沒有一般的方法,只能用枚舉法。用筆在紙上畫一下,用黑白兩種珠子,分類進(jìn)行計(jì)算:例如,全白只1種,四白一黑1種,三白二黑2種,等等,可得總共8種。2、證 由上題子環(huán)的充分必要條件,要證對(duì)任意a,bS1S2 有a-b, abS1S2:因?yàn)镾1,S2是A的子環(huán),故a-b, abS1和a-b, abS2 ,因而a-b, abS1S2 ,所以S1S2是子環(huán)。S1+S2不一定是子環(huán)。在矩陣環(huán)中很容易找到反例:3、解: 1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論