版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第一章:空間幾何體1.1.1柱、錐、臺、球的結(jié)構(gòu)特征第一課時 簡單多面體的結(jié)構(gòu)特征一、教學(xué)目標(biāo)1知識與技能:(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。(3)會用語言概述棱柱、棱錐、棱臺的結(jié)構(gòu)特征。(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。2過程與方法(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。3情感態(tài)度與價值觀(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):讓學(xué)
2、生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。三、教學(xué)思路(一)、學(xué)生了解教學(xué)目標(biāo)見PPT(二)、學(xué)生自學(xué)教材P2P4,探究新知 自主探究,通過學(xué)生觀察、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、棱錐、棱臺等。并且通過交流、討論、概括出各幾何體的結(jié)構(gòu)特征,完成下表。教師對學(xué)生的活動及時給予評價。1、 自學(xué)檢測題 填空: 如果只考慮物體的 和 ,而不考慮其他因素,那么由這些物體抽象出來的 叫做空間幾何體;常見的空間幾何體有 和 兩類。 2、完成表格,認(rèn)識幾何體的結(jié)構(gòu)特征 見PPT 棱柱名稱棱柱直棱柱正棱柱圖 形動畫展示定 義有兩個面互相平行,而
3、其余各面都是四邊形且每相鄰兩個四邊形的交線都互相平行的多面體側(cè)棱垂直于底面的棱柱底面是正多邊形的直棱柱側(cè)棱平行且相等平行且相等平行且相等側(cè)面的形狀平行四邊形矩形全等的矩形對角面的形狀平行四邊形矩形矩形平行于底面的截面的形狀與底面全等的多邊形與底面全等的多邊形與底面全等的正多邊形棱錐和棱臺名稱棱錐正棱錐棱臺正棱臺圖形定義有一個面是多邊形,其余各面是有一個公共頂點(diǎn)的三角形的多面體底面是正多邊形,且頂點(diǎn)在底面的射影是底面的射影是底面和截面之間的部分用一個平行于棱錐底面的平面去截棱錐,底面和截面之間的部分由正棱錐截得的棱臺側(cè)棱相交于一點(diǎn)但不一定相等相交于一點(diǎn)且相等延長線交于一點(diǎn)相等且延長線交于一點(diǎn)側(cè)面
4、的形狀三角形全等的等腰三角形梯形全等的等腰梯形對角面的形狀三角形等腰三角形梯形等腰梯形平行于底的截面形狀與底面相似的多邊形與底面相似的正多邊形與底面相似的多邊形與底面相似的正多邊形其他性質(zhì)高過底面中心;側(cè)棱與底面、側(cè)面與底面、相鄰兩側(cè)面所成角都相等兩底中心連線即高;側(cè)棱與底面、側(cè)面與底面、相鄰兩側(cè)面所成角都相等 幾種特殊四棱柱的特殊性質(zhì)名稱特殊性質(zhì)平行六面體底面和側(cè)面都是平行四邊行;四條對角線交于一點(diǎn),且被該點(diǎn)平分直平行六面體側(cè)棱垂直于底面,各側(cè)面都是矩形;四條對角線交于一點(diǎn),且被該點(diǎn)平分長方體底面和側(cè)面都是矩形;四條對角線相等,交于一點(diǎn),且被該點(diǎn)平分正方體棱長都相等,各面都是正方形四條對角線
5、相等,交于一點(diǎn),且被該點(diǎn)平分(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。 1、判斷下列圖形是什么幾何體? 2、下列說法正確的是( ) A、有兩個面平行,其余各面都是梯形的幾何體是棱臺 B、多面體至少有三個面 C、各側(cè)面都是正方形的四棱柱一定是正方體 D、九棱柱有9條側(cè)棱,9個側(cè)面,側(cè)面為平行四邊形 3、甲、乙、丙是不是愣住棱錐棱臺?為什么? (1) (2) (3) 4、右圖中的幾何體是不是棱臺?為什么? 四、歸納整理由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容五、課堂教學(xué)檢測 (一)選擇題 1、所示幾何體是( )A、 五棱柱B、五棱臺C、五棱錐D、五面體2、 有兩個面平行的多面體不可能是( )A
6、、棱柱B、棱臺C、棱錐D、以上都不是3、面數(shù)最少的多面體的面數(shù)是( ) A、3 B、4 C、5 D、64、六棱柱的頂點(diǎn)數(shù)、棱數(shù)、面數(shù)分別是( )A、12、18、8 B、12、16、8 C、8、18、6 D、12、8、185、 下列四個平面圖形中,每個小四邊形都是正方形,其中可以沿兩個正方形的相鄰邊折疊成一個正方體的圖形是( ) A、 B、 C、 D、 (二)填空題6、下列說法正確的有 棱柱的側(cè)面都是平行四邊形棱柱的側(cè)面為三角形且所有側(cè)面都有一個公共點(diǎn)棱臺的側(cè)面有的是平行四邊形,有的是梯形棱臺的側(cè)棱所在直線均相交于同一點(diǎn)多面體至少有四個面7、 已知正四面體(四個面都是正三角形的三棱錐)的棱長為a
7、,連接兩個面的重心E,F.則線段EF的長為 。8、 正方形ABCD中,E,F分別是BC,CD的中點(diǎn),沿AE,AF,EF將其折成一個多面體,這個多面體是 。(3) 拓展題(選做)D1C19、 如圖,四棱柱的六個面都是平行四邊形。這個四棱柱可以由哪個平面圖形按怎樣的方向平移得到?A1B1DCBA第一章:空間幾何體1.1.1柱、錐、臺、球的結(jié)構(gòu)特征第二課時 旋轉(zhuǎn)體和簡單組合體的結(jié)構(gòu)特征一、教學(xué)目標(biāo)1知識與技能:(1)通過圖片欣賞,增強(qiáng)學(xué)生的直觀感知。(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。(3)會用語言概述圓柱、圓錐、圓臺、球的結(jié)構(gòu)特征。(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。2過程與方法
8、(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。3情感態(tài)度與價值觀(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。三、教學(xué)思路(一)、學(xué)生了解教學(xué)目標(biāo)見PPT(二)、學(xué)生自學(xué)教材P2P7,探究新知 自主探究,通過學(xué)生觀察、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。并且通過交流、討論、概括出各幾何體的
9、結(jié)構(gòu)特征,完成下表。教師對學(xué)生的活動及時給予評價。1圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?2、圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。 3、由 簡單幾何體 組合而成的幾何體叫做簡單組合體,常見的簡單組合體大多數(shù)是由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組成的。簡單組合體的組成形式,一種是由簡單幾何體 拼接 而成,另一種是有簡單幾何體 截去 和 挖掉一部分而成。 4、完成表格 見PPT 圓柱、圓錐、圓臺、球名稱圓柱圓錐圓臺球體圖 形定 義以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體叫圓柱以直角
10、三角形的一條直角邊為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)所成的曲面所圍成的幾何體叫圓錐.用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分叫做圓臺.以半圓的直徑所在直線為旋轉(zhuǎn)軸半圓面旋轉(zhuǎn)一周形成的旋轉(zhuǎn)體 底面的形狀兩個大小相等、平行的圓面一個圓面兩個大小不等、平行的圓面?zhèn)让娴男螤钋媲媲娣忾]的曲面母線不垂直于軸的邊軸旋轉(zhuǎn)軸高兩圓面間的距離頂點(diǎn)到地面的距離或頂點(diǎn)與底面圓心的距離.兩圓面間的距離5現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?小結(jié):同學(xué)們歸納整理,簡單
11、幾何體的構(gòu)成形式:拼接截或挖(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。 1、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢? 2、充滿氣的車輪內(nèi)胎可以通過什么圖形旋轉(zhuǎn)生成? 3、下列敘述中正確的個數(shù)是( ) (1)以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐 (2)以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺 (3)一個圓繞其直徑所在的直線旋轉(zhuǎn)半周所形成的曲面圍成的幾何體是球 (4)用一個平面去截圓錐,得到一個圓錐和一個圓臺 A、0 B、1 C、 2 D、3 4、描述下列幾何體的結(jié)構(gòu)特征。 5、如圖 用一個平行于圓錐SO底面的平面接這個圓錐,截得的圓臺上下底面的面積之比為1:16,截取的圓錐的母線長是3cm,求圓臺的母線長。 S O1 O 6、下列組合體是由什么簡單幾何體組成的? (1) (2) (3)四、歸納整理1、由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容球圓柱圓錐圓臺棱錐棱臺簡單幾何體簡單多面體棱柱簡單旋轉(zhuǎn)體2、本節(jié)知識結(jié)構(gòu)框圖:五、 課堂教學(xué)檢測 (一)選擇題1、下列幾何體是組合體的是( ) A、 B、 C、 D、2、 下列說法正確的是( ) A、用平行于底面的平面截圓錐,兩平行底面之間的幾何體是元臺 B、用一張扇形的紙片可以卷成一個圓錐 C、一個物體上下兩個面是相等的圓面,那么它一定是個圓柱 D、球面和球是同一個概念(二)填空題 3、圓錐的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 技能大賽心得
- 開學(xué)第一課觀后感集錦15篇
- 感恩的講話稿匯編15篇
- 開業(yè)慶典致辭(匯編15篇)
- 公司整體操作流程
- 手術(shù)室基礎(chǔ)知識操作管理
- 全面推進(jìn)依法治國的總目標(biāo)和原則+導(dǎo)學(xué)案 高中政治統(tǒng)編版必修三政治與法治+
- 慶祝圣誕節(jié)活動策劃方案(7篇)
- 家長講話稿合集15篇
- 面向雷達(dá)的智能化干擾策略優(yōu)化技術(shù)研究
- 2025年人教五四新版八年級物理上冊階段測試試卷含答案
- 不同茶葉的沖泡方法
- 2025年春季1530安全教育記錄主題
- 礦山2025年安全工作計劃
- 光伏發(fā)電并網(wǎng)申辦具體流程
- 2025年包裝印刷項(xiàng)目可行性研究報告
- 建筑勞務(wù)專業(yè)分包合同范本(2025年)
- 企業(yè)融資報告特斯拉成功案例分享
- 五年(2020-2024)高考地理真題分類匯編(全國版)專題12區(qū)域發(fā)展解析版
- 《阻燃材料與技術(shù)》課件 第8講 阻燃木質(zhì)材料
- 低空經(jīng)濟(jì)的社會接受度與倫理問題分析
評論
0/150
提交評論