




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1 2 31 空間力系的平衡條件及其應(yīng)用空間力系的平衡條件及其應(yīng)用 32 平面力系的平衡條件及其應(yīng)用平面力系的平衡條件及其應(yīng)用 33 靜定和靜不定問題的概念靜定和靜不定問題的概念 34 剛體系統(tǒng)的平衡剛體系統(tǒng)的平衡 35 平面靜定桁架的內(nèi)力分析平面靜定桁架的內(nèi)力分析 習(xí)題課習(xí)題課 3 一、空間任意力系的平衡充要條件一、空間任意力系的平衡充要條件 ()0 OOi MMF 00 i FF 222 ()()() ixiyiz FFFF 又 222 ( )( )( ) Oxyz MMFMFMF 所以空間一般力系的平衡方程為:所以空間一般力系的平衡方程為: 0,()0 0,()0 0,()0 ixxi
2、iyyi izzi FMF FMF FMF 還有四矩式,五矩式和六矩式,還有四矩式,五矩式和六矩式, 同時各有一定限制條件。同時各有一定限制條件。 4 空間匯交力系的平衡方程為:空間匯交力系的平衡方程為: 因為各力線都匯交于一點,因為各力線都匯交于一點, 各軸都通過該點,故各力矩各軸都通過該點,故各力矩 方程都成為了恒等式。方程都成為了恒等式。 0 0 0 ix iy iz F F F 空間平行力系的平衡方程為:空間平行力系的平衡方程為: 設(shè)各力線都設(shè)各力線都 / z 軸。軸。 ()0 0 0 zi ix iy MF F F 因為因為均為恒等式均為恒等式 0 ()0 ()0 iz xi yi
3、F MF MF 5 二、空間約束二、空間約束 觀察物體在空間的六種(沿三軸移動和繞三軸轉(zhuǎn)觀察物體在空間的六種(沿三軸移動和繞三軸轉(zhuǎn) 動)可能的運動中,有哪幾種運動被約束所阻礙,有動)可能的運動中,有哪幾種運動被約束所阻礙,有 阻礙就有約束反力。阻礙就有約束反力。 1、球鉸鏈、球鉸鏈 6 2、向心軸承,蝶鉸鏈,滾珠(柱)軸承、向心軸承,蝶鉸鏈,滾珠(柱)軸承 7 3、導(dǎo)向軸承、導(dǎo)向軸承 4、帶有銷子的夾板、帶有銷子的夾板 8 5、止推軸承、止推軸承 6、空間固定端、空間固定端 9 例例1 1、鏜刀桿的刀頭在鏜削工件時受到切向力、鏜刀桿的刀頭在鏜削工件時受到切向力F Fz z, 徑向力徑向力F F
4、y y,軸向力,軸向力F Fx x的作的作 用。各力的大小用。各力的大小F Fz z=5000N=5000N, F Fy y=1500N=1500N, F Fx x=750N=750N,而刀尖,而刀尖B B 的坐標的坐標x x =200mm=200mm, y y =75mm=75mm,z z =0=0。如果不計刀桿的重量,試求刀桿根部。如果不計刀桿的重量,試求刀桿根部A A的約束力。的約束力。 10 1、取鏜刀桿為研究對象:、取鏜刀桿為研究對象: 解:解: 2、受力分析、受力分析 刀桿根部是空間固刀桿根部是空間固 定端約束,可有作用在定端約束,可有作用在 A點的三個正交分力和點的三個正交分力和
5、 作用在不同平面內(nèi)的三作用在不同平面內(nèi)的三 個正交力偶表示約束反個正交力偶表示約束反 力。力。 11 0 ix F 0 Axx FF 0 iy F 0 Ayy FF 0 iz F 0 Azz FF 0.0750 Axz MF0 x M 0 y M 0.20 Ayz MF 0 z M 0.0750.20 Azxy MFF 4、聯(lián)立求解聯(lián)立求解 750 N , Ax F 1500 N , Ay F 5000 N Az F 375 N m , Ax M1000 N m , Ay M 243.8 N m Az M 3、列平衡方程列平衡方程 12 例例2、某種汽車后橋半軸可看成支承、某種汽車后橋半軸可看
6、成支承 在各橋殼上的簡支梁。在各橋殼上的簡支梁。A處是徑向止處是徑向止 推軸承,推軸承, B處是徑向軸承。已知汽車處是徑向軸承。已知汽車 勻速直線行駛時地面的法向約束力勻速直線行駛時地面的法向約束力 FD=20kN,錐齒輪上受到有切向力錐齒輪上受到有切向力Ft , 徑向力徑向力Fr ,軸向力,軸向力Fa的作用。已知:的作用。已知: Ft=117kN, Fr=36kN, Fa=22.5kN, 錐齒輪的節(jié)圓平均直徑錐齒輪的節(jié)圓平均直徑d=98cm,車輪,車輪 半徑半徑r=440cm,l1=300cm,l2=900cm, l3=80cm。如果不計重量,試求地面的。如果不計重量,試求地面的 摩擦力和摩
7、擦力和A,B兩處軸承中約束力的大兩處軸承中約束力的大 小。小。 13 3、列平衡方程列平衡方程 解:解: 1、取整體系統(tǒng)為研究對象:取整體系統(tǒng)為研究對象: 2、受力分析如圖、受力分析如圖 t 0 AxBx FFFF a 0 Ay FF r 0 DAzBz FFFF 0 ix F 0 iy F 0 iz F 14 12r23a 0 2 DBx d F lF lF llF t 0 2 d FrF 12t23 0 Bx FlF lF ll 0, x M 0, y M 0, z M 3、聯(lián)立求解聯(lián)立求解 7 kN , Ax F 28.6 kN Az F 123 kN , Bx F 13 kN F 44
8、.6 kN , Bz F 22.5 kN , Ay F 15 一、平面力系的平衡充要條件一、平面力系的平衡充要條件 ()0 OOi MMF 00 i FF 22 ()() ixiy FFF 又 ()0 Oi MF 0 ix F 0 iy F 平面力系平衡方程的基本形式平面力系平衡方程的基本形式 (一矩式)(一矩式) 16 0 ix F ()0 Ai MF ()0 Bi MF 二矩式二矩式 條件:條件:x 軸不軸不 AB連線連線 ()0 Ai MF ()0 Bi MF ()0 Ci MF 三矩式三矩式 條件:條件:A,B,C不在同一直線上不在同一直線上 17 平面匯交力系的平衡方程為:平面匯交力
9、系的平衡方程為: 0 0 ix iy F F 平面平行力系的平衡方程為:平面平行力系的平衡方程為: (設(shè)各力作用線平行設(shè)各力作用線平行y軸)軸) 0 ()0 iy Oi F MF (一矩式)(一矩式) ()0 ()0 Ai Bi MF MF 條件:條件:AB連線不能平行連線不能平行 于力的作用線于力的作用線 (二矩式)(二矩式) 平面力偶系的平衡方程為:平面力偶系的平衡方程為: 0 i M 18 例例1、伸臂式起重機如圖所示伸臂式起重機如圖所示 ,勻質(zhì)伸臂,勻質(zhì)伸臂AB重重G =2200N, 吊車吊車D,E連同吊起重物各重連同吊起重物各重 F1= =F2=4000N。有關(guān)尺寸為:。有關(guān)尺寸為:
10、 l= =4.3m,a=1.5 m,b=0.9 m, c=0.15 m,=25。試求鉸鏈。試求鉸鏈 A對臂對臂AB的水平和鉛直約束力的水平和鉛直約束力 ,以及拉索,以及拉索BF 的拉力的拉力。 19 1、取伸臂、取伸臂AB為研究對象為研究對象 2、受力分析如圖、受力分析如圖 解:解: 20 3、列平衡方程列平衡方程 0 ix F cos0 AxB FF 0 iy F 12 sin0 AyB FFGFF 0, A MF 12 cossin0 2 BB l FaGFlbFcFl 4. .聯(lián)立求解。聯(lián)立求解。 FB = 12456 N FAx = 11290 N FAy = 4936 N 21 例例
11、2 2、梁、梁AB上受到一個均上受到一個均 布載荷和一個力偶作用布載荷和一個力偶作用 ,已知載荷集度(即梁,已知載荷集度(即梁 的每單位長度上所受的的每單位長度上所受的 力)力)q=100=100N/ /m,力偶矩,力偶矩 大小大小M=500=500Nm。長度。長度 AB=3=3m,DB=1=1m。求活。求活 動鉸支動鉸支D和固定鉸支和固定鉸支A的的 約束力約束力。 22 解:解: 1.1.取梁取梁ABAB為研究對象。為研究對象。 FD 23 3、選如圖坐標系,列平衡方程、選如圖坐標系,列平衡方程 FD 0 ix F 0 Ax F 0 iy F 0 AyD FFF 0 Ai MF 2 m0 2
12、 D AB FFM 24 例例3、自重為、自重為G=100kN的的 T字形剛架字形剛架ABD,置于鉛置于鉛 垂面內(nèi),載荷如圖所示,垂面內(nèi),載荷如圖所示, 其 中其 中 M = 2 0 k N m , F=400kN,q=20kN/m, l=1m。試求固定端。試求固定端A的約的約 束力。束力。 l q 60 G 25 1、取、取T 字形剛架為研究對象字形剛架為研究對象 B 解:解: 2、受力分析、受力分析 60 l q 60 G 26 3、按圖示坐標,列寫平衡方程、按圖示坐標,列寫平衡方程 1 1 0 sin 600 0 cos 600 0 cos 60sin 6030 x Ax y Ay A
13、A F FFF F FPF MF MMFlFlFl 4、聯(lián)立求解聯(lián)立求解 1 1 sin 60316.4 kN cos 60100 kN cos 603sin 60789.2 kN m Ax Ay A FFF FPF MMF lFlFl B 60 27 例例4、塔式起重機如圖所示。機架、塔式起重機如圖所示。機架 重重G1=700kN,作用線通過塔架的,作用線通過塔架的 中心。最大起重量中心。最大起重量G2=200kN,最,最 大懸臂長為大懸臂長為12m,軌道,軌道AB的間距的間距 為為4m。平衡荷重。平衡荷重G3到機身中心線到機身中心線 距離為距離為6m。試問:。試問: (1)保證起重機在滿載
14、和空載時都保證起重機在滿載和空載時都 不翻倒,求平衡荷重不翻倒,求平衡荷重G3應(yīng)為多少應(yīng)為多少? (2)當(dāng)平衡荷重當(dāng)平衡荷重G3=180kN時,求時,求 滿載時軌道滿載時軌道A,B給起重機輪子的給起重機輪子的 約束力?約束力? A F B F 28 3min12 3min 0 6 m2 m2 m12 m2 m0 75 kN B M GGG G 3max1 3max 0 6 m2 m2 m0 350 kN A M GG G 解:解: A F B F 29 312 312 0 6 m2 m2 m12 m2 m4 m0 0 0 A B iy AB M GGGF F GGGFF 870 kN 210
15、kN B A F F A F B F 30 F1 60 F2 例例5、外伸梁的尺寸及載荷如圖所示,、外伸梁的尺寸及載荷如圖所示,F(xiàn)1=2 kN,F(xiàn)2=1.5kN,M=1.2kNm,l1=1.5m, l2=2.5m,試求鉸支座,試求鉸支座A及支座及支座B的約束力。的約束力。 31 1、取梁為研究對象、取梁為研究對象 0.75 kN Ax F 3.56 kN By F 0.261 kN Ay F 4、 解方程 解:解: 0 ix F 2cos60 0 Ax FF 0 A M 21 1212 ()sin600 By F lMFlF ll 0 iy F 12 sin600 AyBy FFFF 3、列平
16、衡方程、列平衡方程 60 2、受力分析、受力分析 F1 60 F2 32 靜定靜不定 靜定問題靜定問題 當(dāng)系統(tǒng)中未知量數(shù)目等于或少于獨當(dāng)系統(tǒng)中未知量數(shù)目等于或少于獨 立平衡方程數(shù)目時的問題。立平衡方程數(shù)目時的問題。 靜不定問題靜不定問題 當(dāng)系統(tǒng)中未知量數(shù)目多于獨立平衡當(dāng)系統(tǒng)中未知量數(shù)目多于獨立平衡 方程數(shù)目時,不能求出全部未知量方程數(shù)目時,不能求出全部未知量 的問題。的問題。 33 靜不定靜不定 (1次)次)靜定靜定 靜不定靜不定 (2次)次)靜不定靜不定 (3次)次) 34 一、一、 概念概念 剛體系統(tǒng)剛體系統(tǒng):由若干個剛體通過約束組成的系統(tǒng)由若干個剛體通過約束組成的系統(tǒng)。 外力外力:剛體系
17、統(tǒng)以外任何物體作用于該系統(tǒng)的力。:剛體系統(tǒng)以外任何物體作用于該系統(tǒng)的力。 內(nèi)力內(nèi)力:剛體系統(tǒng)內(nèi)部各物體間互相作用的力:剛體系統(tǒng)內(nèi)部各物體間互相作用的力。 二、二、 剛體系統(tǒng)平衡方程數(shù)目剛體系統(tǒng)平衡方程數(shù)目 由由n個剛體構(gòu)成的剛體系統(tǒng)個剛體構(gòu)成的剛體系統(tǒng) n1個平面力系個平面力系 n2個平面匯交力系或平面平行力系個平面匯交力系或平面平行力系 n3個平面力偶系個平面力偶系 系統(tǒng)平衡方程的個數(shù)為:系統(tǒng)平衡方程的個數(shù)為:m=3n1+2n2+n3 35 例例1、組合梁、組合梁AC和和CE用鉸鏈用鉸鏈C相連,相連,A端為固定端,端為固定端,E端為活端為活 動鉸鏈支座。受力如圖所示。已知:動鉸鏈支座。受力如
18、圖所示。已知: l=8m,F(xiàn)=5kN,均布載,均布載 荷集度荷集度q=2.5kN/m,力偶矩的大小,力偶矩的大小M=5kNm,試求固端,試求固端A,鉸,鉸 鏈鏈C和支座和支座E的約束力。的約束力。 36 解:解: 2、受力分析、受力分析 0 ix F 0 Cx F 0 C M 0 482 E lll qMF 3、列平衡方程列平衡方程 1、取、取CE段為研究對象段為研究對象 0 iy F 0 4 CyE l FqF 4、求解得: FE=2.5kN, FCy=2.5kN 一:一: 37 3、列平衡方程、列平衡方程 1、取、取AC段為研究對象段為研究對象 3 0 8482 ACy llll MFq
19、F 0 A M 0 4 AyCy l FFFq 0 iy F Cy F Cx F 2、受力分析、受力分析 二: 0 AxCx F F 0 ix F 38 例例2、三鉸拱橋如圖所示,由三鉸拱橋如圖所示,由 左右兩段借鉸鏈左右兩段借鉸鏈C連接起來,連接起來, 又用鉸鏈又用鉸鏈A,B與基礎(chǔ)相連接。與基礎(chǔ)相連接。 已知每段重已知每段重G=40kN,重心分,重心分 別在別在D,E處,且橋面受一集處,且橋面受一集 中載荷中載荷F=10kN。設(shè)各鉸鏈都。設(shè)各鉸鏈都 是光滑的,試求平衡時,各鉸是光滑的,試求平衡時,各鉸 鏈中的力。尺寸如圖所示鏈中的力。尺寸如圖所示。 G F 3 m G 1 m 6 m6 m
20、6 m 39 G F 3 m G 1 m 6 m6 m 6 m FBy FBx FAy FAx 解:解: 2、受力分析、受力分析 3、列平衡方程列平衡方程 1、取、取整體整體為研究對象為研究對象 一:一: 113120 Ay GFGF 0 B M 119120 By GFGF 0 A M FAy= 42.5 kN FBy= 47.5 kN 0 ix F 0( ) AxBx FFa 40 3、列平衡方程、列平衡方程 1、取、取AC段為研究對象段為研究對象 2、受力分析、受力分析 二: 0 ix F 0 AxCx FF 0 iy F 0 AyCy FFG 0 C M 6650 AxAy FFG F
21、Ax= 9.2 kN FCx = 9.2 kN FCy= 2.5 kN 解得:解得: FAx帶入(帶入(a)式可求)式可求FBx 41 例例3、A,B,C,D處均為光滑鉸鏈,物塊重為處均為光滑鉸鏈,物塊重為 G,通過繩子繞過滑輪水平地連接于桿,通過繩子繞過滑輪水平地連接于桿AB的的E點,點, 各構(gòu)件自重不計,試求各構(gòu)件自重不計,試求B處的約束力。處的約束力。 42 520 Ax rGrF 0 C M 220 BxByE rFrFrF0 A M 0 AxBxE FFF0 ix F 1.5 , Bx FG 2 By FG 2.5 Ax FG 一: 二: FAy FAx FCx FCy G FBx
22、FAy FAx FBy FE 43 例例4、如圖所示,已知重力、如圖所示,已知重力 G,DC=CE=AC=CB=2l; 定滑輪半徑為定滑輪半徑為R,動滑輪半,動滑輪半 徑為徑為r,且,且R=2r=l, =45。 試求:試求:A,E支座的約束力支座的約束力 及及BD桿所受的力。桿所受的力。 44 5 25 88 13 sin 45 8 AEx EyA G FGF G FGF sin 450 AEy FFG 解:解: 一: 0 E M 5 220 2 A FlGl 0 ix F cos 450 AEx FF 0 iy F 45 二: cos 45220 DBKEy FlFlFl 0 C M 32
23、8 D B G F DB F Cy F Cx F 46 一、概念一、概念 桁架:桁架:一種由若干桿件彼此在兩端用鉸鏈連接而成,一種由若干桿件彼此在兩端用鉸鏈連接而成, 受力后幾何形狀不變的結(jié)構(gòu)。受力后幾何形狀不變的結(jié)構(gòu)。 平面桁架:平面桁架:所有桿件都在同一平面內(nèi)的桁架。所有桿件都在同一平面內(nèi)的桁架。 節(jié)節(jié) 點:點:桁架中桿件的鉸鏈接頭。桁架中桿件的鉸鏈接頭。 桿件內(nèi)力:桿件內(nèi)力:各桿件所承受的力。各桿件所承受的力。 47 桁架結(jié)構(gòu)桁架結(jié)構(gòu) 48 無余桿桁架:無余桿桁架: 如果從桁架中任意抽去一根桿件,如果從桁架中任意抽去一根桿件, 則桁架就會活動變形,即失去形狀則桁架就會活動變形,即失去形狀
24、 的固定性。的固定性。 49 有余桿桁架:有余桿桁架:如果從桁架中抽去某幾根桿件,桁架如果從桁架中抽去某幾根桿件,桁架 不會活動變形,即不會失去形狀的固不會活動變形,即不會失去形狀的固 定性。定性。 50 簡單平面桁架:簡單平面桁架:以一個鉸鏈三角形框架為基礎(chǔ),每增以一個鉸鏈三角形框架為基礎(chǔ),每增 加一個節(jié)點需增加二根桿件,可以加一個節(jié)點需增加二根桿件,可以 構(gòu)構(gòu) 成無余桿的平面桁架。成無余桿的平面桁架。 51 二、桁架計算的常見假設(shè)二、桁架計算的常見假設(shè) 1、桁架中的桿件都是直桿,并用光滑鉸鏈連接。、桁架中的桿件都是直桿,并用光滑鉸鏈連接。 2、桁架受的力都作用在節(jié)點上,并在桁架的平面內(nèi)。桁
25、架受的力都作用在節(jié)點上,并在桁架的平面內(nèi)。 3、桁架的自重忽略不計,或被平均分配到桿件兩端桁架的自重忽略不計,或被平均分配到桿件兩端 的節(jié)點上,這樣的桁架稱為理想桁架。的節(jié)點上,這樣的桁架稱為理想桁架。 52 桁架結(jié)構(gòu)的優(yōu)點桁架結(jié)構(gòu)的優(yōu)點 可以充分發(fā)揮材料的作用,減輕結(jié)構(gòu)的重量,可以充分發(fā)揮材料的作用,減輕結(jié)構(gòu)的重量, 節(jié)約材料。節(jié)約材料。 簡單平面桁架的靜定性簡單平面桁架的靜定性 當(dāng)簡單平面桁架的支座反力不多于當(dāng)簡單平面桁架的支座反力不多于3個時,求其個時,求其 桿件內(nèi)力的問題是靜定的,否則不靜定。桿件內(nèi)力的問題是靜定的,否則不靜定。 53 三、三、計算計算桁架桿件內(nèi)力的方法桁架桿件內(nèi)力的方
26、法 節(jié)點法節(jié)點法 應(yīng)用共點力系平衡條件,逐一研究桁應(yīng)用共點力系平衡條件,逐一研究桁 架上每個節(jié)點的平衡。架上每個節(jié)點的平衡。 截面法截面法 用應(yīng)用平面任意力系的平衡條件,研用應(yīng)用平面任意力系的平衡條件,研 究桁架由截面切出的某些部分的平衡。究桁架由截面切出的某些部分的平衡。 54 例例1 1、如圖平面桁架,求各桿內(nèi)力。已知鉛垂力、如圖平面桁架,求各桿內(nèi)力。已知鉛垂力 FC=4 kN,水平力,水平力FE=2 kN。 解:解: 1、取整體為研究對象取整體為研究對象 2、受力分析如圖、受力分析如圖 55 3、列平衡方程列平衡方程 0 AxE FF 0 ix F 0 BAyC FFF 0 iy F 30 CEB FaFaFa0 A M 4、聯(lián)立求解聯(lián)立求解 FAx= 2 kN FAy= 2 kN FB = 2 kN 56 5、取節(jié)點取節(jié)點A,受力分析如圖受力分析如圖 解得解得 2 2 kN AF F 4kN AC F 列平衡方程列平衡方程 cos450 AxACAF FFF 0 ix F cos450 AyAF FF 0 iy F 57 6 6、取節(jié)點、取節(jié)點F,受力分析如圖,受力分析如圖 解得解得 2kN FE F 2kN FC F 列平衡方程列平衡方程 0 ix F cos450 FEFA FF 0 iy F cos450 FCFA FF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年注冊會計師考試的知識獲取渠道與試題及答案
- 2024年注冊會計師必讀學(xué)習(xí)資源試題及答案
- 妊娠劇吐腦病護理
- 發(fā)熱患者的護理注意事項
- 績效評估體系的建立與優(yōu)化計劃
- 預(yù)算控制工作方案計劃
- 第13課《一、創(chuàng)建站點》教學(xué)設(shè)計 2023-2024學(xué)年初中信息技術(shù)人教版七年級上冊
- 推動變革社團工作變革計劃
- 激發(fā)學(xué)生創(chuàng)造力的班級活動設(shè)計計劃
- 政策法規(guī)培訓(xùn)計劃
- 2025年遼寧盤錦市盤山縣公開招聘事業(yè)單位工作人員221名歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 2025年江蘇紫金財產(chǎn)保險股份有限公司招聘筆試參考題庫含答案解析
- 放射醫(yī)學(xué)檢查技術(shù)及操作規(guī)范
- 2025年工程設(shè)備供應(yīng)合同范本
- 《剪板機安全操作培訓(xùn)》課件
- 無人機物流配送方案
- 手術(shù)患者轉(zhuǎn)運交接課件
- DB51T 1466-2012 馬尾松二元立木材積表、單木出材率表
- 《氧氣吸入法》課件
- 小零散工程施工安全培訓(xùn)
- 2025年中考語文復(fù)習(xí):散文閱讀 試題解析+習(xí)題演練
評論
0/150
提交評論