初中數(shù)學(xué)幾何證明題技巧_第1頁
初中數(shù)學(xué)幾何證明題技巧_第2頁
初中數(shù)學(xué)幾何證明題技巧_第3頁
初中數(shù)學(xué)幾何證明題技巧_第4頁
初中數(shù)學(xué)幾何證明題技巧_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、初中數(shù)學(xué)幾何證明題技巧 幾何證明題入門難,證明題難做,是許多初中生在學(xué)習(xí)中的共識(shí),這里面有很多因素,有主觀的、也有客觀的,學(xué)習(xí)不得法,沒有適當(dāng)?shù)慕忸}思路則是其中的一個(gè)重要原因。掌握證明題的一般思路、探討證題過程中的數(shù)學(xué)思維、總結(jié)證題的基本規(guī)律是求解幾何證明題的關(guān)鍵。在這里結(jié)合自己的教學(xué)經(jīng)驗(yàn),談?wù)勛约旱囊恍┓椒ㄅc大家一起分享。一要審題。很多學(xué)生在把一個(gè)題目讀完后,還沒有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可取。我們應(yīng)該逐個(gè)條件的讀,給的條件有什么用,在腦海中打個(gè)問號(hào),再對應(yīng)圖形來對號(hào)入座,結(jié)論從什么地方入手去尋找,也在圖中找到位置。二要記。這里的記有兩層意思。第一層意

2、思是要標(biāo)記,在讀題的時(shí)候每個(gè)條件,你要在所給的圖形中標(biāo)記出來。如給出對邊相等,就用邊相等的符號(hào)來表示。第二層意思是要牢記,題目給出的條件不僅要標(biāo)記,還要記在腦海中,做到不看題,就可以把題目復(fù)述出來。三要引申。難度大一點(diǎn)的題目往往把一些條件隱藏起來,所以我們要會(huì)引申,那么這里的引申就需要平時(shí)的積累,平時(shí)在課堂上學(xué)的基本知識(shí)點(diǎn)掌握牢固,平時(shí)訓(xùn)練的一些特殊圖形要熟記,在審題與記的時(shí)候要想到由這些條件你還可以得到哪些結(jié)論(就像電腦一下,你一點(diǎn)擊開始立刻彈出對應(yīng)的菜單),然后在圖形旁邊標(biāo)注,雖然有些條件在證明時(shí)可能用不上,但是這樣長期的積累,便于以后難題的學(xué)習(xí)。四要分析綜合法。分析綜合法也就是要逆向推理

3、,從題目要你證明的結(jié)論出發(fā)往回推理??纯唇Y(jié)論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對頂角相等2.平行線里同位角相等、內(nèi)錯(cuò)角相等3.余角、補(bǔ)角定理4.角平分線定義5.等腰三角形6.全等三角形的對應(yīng)角等等方法。然后結(jié)合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉(zhuǎn)換成證明其他的結(jié)論,通常缺少的條件會(huì)在第三步引申出的條件和題目中出現(xiàn),這時(shí)再把這些條件綜合在一起,很條理的寫出證明過程。五要?dú)w納總結(jié)。很多同學(xué)把一個(gè)題做出來,長長的松了一口氣,接下來去做其他的,這個(gè)也是不可取的,應(yīng)該花上幾分鐘的時(shí)間,回過頭來找找所用的定理、公理、定義,重新審視這個(gè)題,總結(jié)這

4、個(gè)題的解題思路,往后出現(xiàn)同樣類型的題該怎樣入手。以上是常見證明題的解題思路,當(dāng)然有一些的題設(shè)計(jì)的很巧妙,往往需要我們在填加輔助線,分析已知、求證與圖形,探索證明的思路。對于證明題,有三種思考方式:(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。(2)逆向思維。顧名思義,就是從相反的方向思考問題。運(yùn)用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要掌握的。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門學(xué)科知識(shí)點(diǎn)很少,關(guān)鍵是怎樣運(yùn)用,對于初中幾何證明題,最好用的

5、方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒有思路,那你一定要注意了:從現(xiàn)在開始,總結(jié)做題方法。同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個(gè)三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個(gè)條件又需要怎樣做輔助線,這樣思考下去這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是非常好用的方法,同學(xué)們一定要試一試。(3)正逆結(jié)合。對于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認(rèn)真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是

6、解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無不勝。要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。下面歸類一下,多做練習(xí),熟能生巧,遇到幾何證明題能想到采用哪一類型原理來解決問題。一、證明兩線段相等1.兩全等三角形中對應(yīng)邊相等。2.同一三角形中等角對等邊。3.等腰三角形頂角的平分線或底邊的高平分底邊。4.平行四邊形的對邊或?qū)蔷€被交點(diǎn)分成的兩段相等。5.直角三角形斜邊的中點(diǎn)到三頂點(diǎn)距離相等。6.線段垂直平分線上

7、任意一點(diǎn)到線段兩段距離相等。7.角平分線上任一點(diǎn)到角的兩邊距離相等。8.過三角形一邊的中點(diǎn)且平行于第三邊的直線分第二邊所成的線段相等。9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。10.圓外一點(diǎn)引圓的兩條切線的切線長相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。11.兩前項(xiàng)(或兩后項(xiàng))相等的比例式中的兩后項(xiàng)(或兩前項(xiàng))相等。12.兩圓的內(nèi)(外)公切線的長相等。13.等于同一線段的兩條線段相等。二、證明兩個(gè)角相等1.兩全等三角形的對應(yīng)角相等。2.同一三角形中等邊對等角。3.等腰三角形中,底邊上的中線(或高)平分頂角。4.兩條平行線的同位角、內(nèi)錯(cuò)角或平行四邊形的

8、對角相等。5.同角(或等角)的余角(或補(bǔ)角)相等。6.同圓(或圓)中,等弦(或?。┧鶎Φ膱A心角相等,圓周角相等,弦切角等于它所夾的弧對的圓周角。7.圓外一點(diǎn)引圓的兩條切線,圓心和這一點(diǎn)的連線平分兩條切線的夾角。8.相似三角形的對應(yīng)角相等。9.圓的內(nèi)接四邊形的外角等于內(nèi)對角。10.等于同一角的兩個(gè)角相等。三、證明兩條直線互相垂直1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。2.三角形中一邊的中線若等于這邊一半,則這一邊所對的角是直角。3.在一個(gè)三角形中,若有兩個(gè)角互余,則第三個(gè)角是直角。4.鄰補(bǔ)角的平分線互相垂直。5.一條直線垂直于平行線中的一條,則必垂直于另一條。6.兩條直線相交成直角則兩

9、直線垂直。7.利用到一線段兩端的距離相等的點(diǎn)在線段的垂直平分線上。8.利用勾股定理的逆定理。9.利用菱形的對角線互相垂直。10.在圓中平分弦(或弧)的直徑垂直于弦。11.利用半圓上的圓周角是直角。四、證明兩直線平行1.垂直于同一直線的各直線平行。2.同位角相等,內(nèi)錯(cuò)角相等或同旁內(nèi)角互補(bǔ)的兩直線平行。3.平行四邊形的對邊平行。4.三角形的中位線平行于第三邊。5.梯形的中位線平行于兩底。6.平行于同一直線的兩直線平行。7.一條直線截三角形的兩邊(或延長線)所得的線段對應(yīng)成比例,則這條直線平行于第三邊。五、證明線段的和差倍分1.作兩條線段的和,證明與第三條線段相等。2.在第三條線段上截取一段等于第一

10、條線段,證明余下部分等于第二條線段。3.延長短線段為其二倍,再證明它與較長的線段相等。4.取長線段的中點(diǎn),再證其一半等于短線段。5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質(zhì)等)。六、證明角的和差倍分1.與證明線段的和、差、倍、分思路相同。2.利用角平分線的定義。3.三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。七、證明線段不等1.同一三角形中,大角對大邊。2.垂線段最短。3.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。4.在兩個(gè)三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。5.同圓或等圓中,弧大弦大,弦心距小。6.全量大于它的任何一部分。八、證明兩角的不等1.同一三角形中,大邊對大角。2.三角形的外角大于和它不相鄰的任一內(nèi)角。3.在兩個(gè)三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。4.同圓或等圓中,弧大則圓周角、圓心角大。5.全量大于它的任何一部分。九、證明比例式或等積式1.利用相似三角形對應(yīng)線段成比例。2.利用內(nèi)外角平分線定理。3.平行線截線段成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論