




已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
JournalofMaterialsProcessingTechnologyxxx(2005)xxxxxxAbstractoperations.metal-cuttingforfeed-rateconductedK1.theofaremeragearederEvanthemachiningnecessarysatisfytioperatingAtainconditions.de0924-0136/$doi:10.1016/j.jmatprotec.2005.02.143Fuzzycontrolstrategyforanadaptiveforcecontrolinend-millingU.Zuperl,F.Cus,M.MilfelnerFacultyofMechanicalEngineering,UniversityofMaribor,Smetanova17,2000Maribor,SloveniaThispaperdiscussestheapplicationoffuzzyadaptivecontrolstrategytotheproblemofcuttingforcecontrolinhighspeedend-millingTheresearchisconcernedwithintegratingadaptivecontrolwithastandardcomputernumericalcontroller(CNC)foroptimisingaprocess.Itisdesignedtoadaptivelymaximisethefeed-ratesubjecttoallowablecuttingforceonthetool,whichisverybeneficialatimeconsumingcomplexshapemachining.Thepurposeistopresentareliable,robustneuralcontrolleraimedatadaptivelyadjustingtopreventexcessivetoolwear,toolbreakageandmaintainahighchipremovalrate.Numeroussimulationsandexperimentsaretoconfirmtheefficiencyofthisarchitecture.2005ElsevierB.V.Allrightsreserved.eywords:End-milling;Adaptiveforcecontrol;FuzzyIntroductionAremainingdrawbackofmodernCNCsystemsisthatmachiningparameters,suchasfeed-rate,speedanddepthcut,areprogrammedoff-line.Themachiningparameterssimulationswiththefuzzycontrolstrategyarecarriedout.Theresultsdemonstratetheabilityoftheproposedsystemtoeffectivelyregulatepeakforcesforcuttingconditionscom-monlyencounteredinend-millingoperations.Forcecontrolalgorithmshavebeendevelopedandeval-usuallyselectedbeforemachiningaccordingtoprogram-sexperienceandmachininghandbooks.Topreventdam-andtoavoidmachiningfailuretheoperatingconditionsusuallysetextremelyconservative.Asaresult,manyCNCsystemsareinefficientandrunun-theoperatingconditionsthatarefarfromoptimalcriteria.enifthemachiningparametersareoptimisedoff-linebyoptimisationalgorithm5theycannotbeadjustedduringmachiningprocess.Toensurethequalityofmachiningproducts,toreducethecostsandincreasethemachiningefficiency,itistoadjustthemachiningparametersinreal-time,totheoptimalmachiningcriteria.Forthisreason,adap-vecontrol(AC),whichprovideson-lineadjustmentoftheconditions,isbeingstudiedwithinterest3.InourCsystem,thefeed-rateisadjustedon-lineinordertomain-aconstantcuttingforceinspiteofvariationsincuttingInthispaper,asimplefuzzycontrolstrategyisvelopedintheintelligentsystemandsomeexperimentalCorrespondingauthor.Tel.:+38622207623;fax:+38622207990.E-mailaddress:uros.zuperluni-mb.si(U.Zuperl).uatedisnallyantrollerditions.trollerandatedallthetems,bysentedtesystems3controlhasmotion.forseefrontmatter2005ElsevierB.V.Allrightsreserved.bynumerousresearchers.Amongthemostcommonthefixedgainproportionalintegral(PI)controllerorigi-proposedformillingby4.Kimetal.4proposedadjustablegainPIcontrollerwherethegainofthecon-isadjustedinresponsetovariationsincuttingcon-Thepurelyadaptivemodelreferenceadaptivecon-(MRAC)approachwasoriginallyinvestigatedbyCusBalic2.Thesecontrollersweresimulatedandevalu-andphysicallyimplementedby1.Bothstudiesfoundthree-parameteradaptivecontrollertoperformbetterthanfixedgainPIcontroller.Asregardsfuzzycontrolsys-anintroductorysurveyofpioneeringactivitiesisgivenHuangandLin3,andamoresystematicviewispre-byin4.Comparisonsoffuzzywithproportionalin-gralderivative(PID)controlandstabilityanalysisoffuzzyandsupervisoryfuzzycontrolareaddressedinRef.Muchworkhasbeendoneontheadaptivecuttingforceformilling2.However,mostofthepreviousworksimplifiedtheproblemofmillingintoone-dimensionalInthiscontribution,wewillconsiderforcecontrolthree-dimensionalmilling.2Processingscribesthesimulation/eposedimentalresearch.2.fuzzyseteThewhichplementcontrolmoreTherateasthecomparedcontrolFuzzyratecuttingcreasesrates,productionarebreakage.callytheforbelo.signingonactualcentagemisationalcorrectcontrolleraplepro2.1.aaboutinputoperatorthroughU.Zuperletal./JournalofMaterialsThepaperisorganisedasfollows.Section2brieflyde-theoverallforcecontrolstrategy.Section3coversCNCmachiningprocessmodel.Section5describesthexperimentsandimplementationmethodofpro-controlscheme.Finally,Sections6and7presentexper-results,conclusions,andrecommendationsforfutureAdaptivefuzzycontrollerstructureAnewon-linecontrolschemewhichiscalledadaptivecontrol(AFC)(Fig.1)isdevelopedbyusingthefuzzytheory.Thebasicideaofthisapproachistoincorporatethexperienceofahumanoperatorindesignofthecontroller.controlstrategiesareformulatedasanumberofrulesaresimpletocarryoutmanuallybutdifficulttoim-byusingconventionalalgorithm.Basedonthisnewstrategy,verycomplicatedprocesscanbecontrolledeasilyandaccuratelycomparedtostandardapproaches.objectiveoffuzzycontroliskeepingthemetalremoval(MRR)ashighaspossibleandmaintainingcuttingforcecloseaspossibletoagivenreferencevalue.Furthermore,amountofcomputationtaskandtimecanbereducedastoclassicalormoderncontroltheory.Schematicrulesareconstructedbyusingrealexperimentaldata.adaptivecontrolensurescontinuousoptimisingfeedcontrolthatisautomaticallyadjustedtoeachparticularsituation.Whenspindleloadsarelow,thesystemin-cuttingfeedsaboveandbeyondpre-programmedfeedresultinginconsiderablereductionsincycletimesandcosts.Whenspindleloadsarehighthefeedrateslowered,safeguardingmachinetoolsfromdamagefromWhensystemdetectsextremeforces,itautomati-stopsthemachinetoprotectthecuttingtool.Itreducesneedforconstantoperatorsupervision.Sequenceofstepson-lineoptimisationofthemillingprocessarepresentedw.namicstheasvofcuttinglated,Delta1forceFig.1.ComparisonofactualTechnologyxxx(2005)xxxxxxThepre-programmedfeedratesaresenttoCNCcontrollerofthemillingmachine.Themeasuredcuttingforcesaresenttothefuzzycon-troller.Fuzzycontrollerusestheenteredrulestofind(adjust)theoptimalfeed-ratesandsendsitbacktothemachine.Steps1and3arerepeateduntilterminationofmachining.Theadaptiveforcecontrolleradjuststhefeed-ratebyas-afeed-rateoverridepercentagetotheCNCcontrollerafour-axisHeller,basedonameasuredpeakforce.Thefeed-rateistheproductofthefeed-rateoverrideper-andtheprogrammedfeed-rate.Ifthefeed-rateopti-modelswereperfect,theoptimisedfeed-ratewouldwaysbeequaltothereferencepeakforce.Inthiscasetheoverridepercentagewouldbe100%.Inorderforthetoregulatepeakforce,forceinformationmustbevailabletothecontrolalgorithmateverycontrollersam-time.Adataacquisitionsoftware(Labview)isusedtovidethisinformation.StructureofafuzzycontrollerInfuzzyprocesscontrol,expertiseisencapsulatedintosystemintermsoflinguisticdescriptionsofknowledgehumanoperatingcriteria,andknowledgeabouttheoutputrelationships.Thealgorithmisbasedonthesknowledge,butitalsoincludescontroltheory,theerrorderivative,takingintoconsiderationthedy-oftheprocess.Thus,thecontrollerhasasitsinputs,cuttingforceerrorDelta1FanditsfirstdifferenceDelta12F,andoutputs,thevariationinfeedrateDelta1f.Thefuzzycontrolariablesfuzzification(seeFig.2)aswellasthecreationtherulesbaseweretakenfromtheexpertoperator.Theforceerrorandfirstdifferenceoftheerrorarecalcu-ateachsamplinginstantk,as:Delta1F(k)=FrefF(k)and2F(k)=Delta1F(k)Delta1F(k1),whereFismeasuredcuttingandFrefisforcesetpoint.andmodelfeed-rate.3.etalandforcesscribedmachinefeedingfitquencefromformcommandedtingmodel.mentalfeed-rateU.Zuperletal./JournalofMaterialsProcessingFig.2.StructureofafuzzyCNCmachiningprocessmodelACNCmachiningprocessmodelsimulatorisusedtovaluatethecontrollerdesignbeforeconductingexperimen-tests.Theprocessmodelconsistsofaneuralforcemodelfeeddrivemodel.Theneuralmodelestimatescuttingbasedoncuttingconditionsandcutgeometryasde-byZuperl1.Thefeeddrivemodelsimulatestheresponsetochangesincommandedfeed-rate.Thedrivemodelwasdeterminedexperimentallybyexamin-stepchangesinthecommandedvelocity.Thebestmodelwasfoundtobeasecond-ordersystemwithanaturalfre-yof3Hzandasettlingtimeof0.4s.Comparisonofxperimentalandsimulationresultsofavelocitystepchange7to22mm/sisshownonFig.3.ThefeeddriveandneuralforcemodelarecombinedtotheCNCmachiningprocessmodel.Modelinputisthefeed-rateandtheoutputistheX,Yresultantcut-force.ThecutgeometryisdefinedintheneuralforceThesimulatorisverifiedbycomparisonofexperi-andmodelsimulationresults.Avarietyofcutswithchangesweremadeforvalidation.changeFig.resultsTechnologyxxx(2005)xxxxxx3controller.Theexperimentalandsimulationresultantforceforastepinfeed-ratefrom0.05to2mm/toothispresentedin4.Theexperimentalresultscorrelatewellwithmodelintermsofaverageandpeakforce.TheexperimentalFig.3.Comparisonofactualandmodelfederate.4resultsandthe3.1.dardlarimentsforceusedfederatedialforcesaryU.Zuperletal./JournalofMaterialsProcessingFig.4.Structureofafuzzycorrelatewellwithmodelresultsintermsofaveragepeakforce.Theobviousdiscrepancymaybeduetoinaccuraciesinneuralmodel,andunmodeledsystemdynamics.CuttingforcemodelingTorealisetheon-linemodellingofcuttingforces,astan-BPneuralnetwork(NN)isproposedbasedonthepopu-backpropagationleeringrule.Duringpreliminaryexper-itprovedtobesufficientlycapableofextractingthemodeldirectlyfromexperimentalmachiningdata.Itistosimulatethecuttingproc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 心理助手考試試題及答案
- 土壤考試試題及答案
- 京麥客服考試試題及答案
- (期末考點培優(yōu))專題04 用單詞適當(dāng)形式填空-2024-2025學(xué)年六年級英語下學(xué)期期末復(fù)習(xí)專項外研版(三起)(含答案解析)
- 會計人員考試試題及答案
- 《小學(xué)語文課程與教學(xué)論》電子教案-第十四章 語文課堂任務(wù)
- 吉林省遼源市田家炳高中友好學(xué)校七十六屆期末聯(lián)考2023-2024學(xué)年高三上學(xué)期1月期末政治 含解析
- 四川省成都市成華區(qū)某校2023-2024學(xué)年高一上學(xué)期12月月考物理 無答案
- 陜西省咸陽市實驗中學(xué)2022-2023學(xué)年高二下學(xué)期第二次月考 數(shù)學(xué)(理) 含解析
- 2024屆湖南省永州市高三上學(xué)期第二次模擬考試英語 含解析
- 《動物防疫》課件
- 2025年山東銀座集團股份有限公司招聘筆試參考題庫含答案解析
- (完整版)大學(xué)學(xué)術(shù)英語讀寫教程下冊課文翻譯
- 山西焦煤招聘2025筆試題庫
- 《Hadoop技術(shù)原理》課件-11.Flume
- 太子參的種植方法及管理
- 國開大學(xué)2024秋《國家開放大學(xué)學(xué)習(xí)指南》在線形考(任務(wù)一至五)試題及答案
- 高壓設(shè)施維修合同范例
- AI新時代算力需求高增長-算力網(wǎng)絡(luò)建設(shè)有望奔向太空
- 2024年北京大學(xué)強基計劃物理試題(附答案)
- 2024企業(yè)咨詢服務(wù)與戰(zhàn)略規(guī)劃合同
評論
0/150
提交評論