外文翻譯--傳統(tǒng)上的機(jī)械設(shè)計(jì)考慮積層高速內(nèi)置永磁同步機(jī)轉(zhuǎn)子  英文版.pdf_第1頁
外文翻譯--傳統(tǒng)上的機(jī)械設(shè)計(jì)考慮積層高速內(nèi)置永磁同步機(jī)轉(zhuǎn)子  英文版.pdf_第2頁
外文翻譯--傳統(tǒng)上的機(jī)械設(shè)計(jì)考慮積層高速內(nèi)置永磁同步機(jī)轉(zhuǎn)子  英文版.pdf_第3頁
外文翻譯--傳統(tǒng)上的機(jī)械設(shè)計(jì)考慮積層高速內(nèi)置永磁同步機(jī)轉(zhuǎn)子  英文版.pdf_第4頁
外文翻譯--傳統(tǒng)上的機(jī)械設(shè)計(jì)考慮積層高速內(nèi)置永磁同步機(jī)轉(zhuǎn)子  英文版.pdf_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

806IEEETRANSACTIONSONINDUSTRYAPPLICATIONS,VOL.40,NO.3,MAY/JUNE2004MechanicalDesignConsiderationsforConventionallyLaminated,High-Speed,InteriorPMSynchronousMachineRotorsEdwardC.Lovelace,Member,IEEE,ThomasM.Jahns,Fellow,IEEE,ThomasA.Keim,Member,IEEE,andJeffreyH.Lang,Fellow,IEEEAbstractThispaperdiscussesmechanicaldesignconsid-erationsthatareparticulartoconventionally(i.e.,radially)laminatedrotorsofinteriorpermanent-magnetsynchronousmachines.Focusisplacedonapplicationswheretheradialforcesduetohigh-speedoperationarethemajormechanicallylimitingdesignfactor.Properdesignofthelaminationbridges,orribs,attherotorouterdiameterisexplainedintermsofthebothmaterialconsiderationsandelectromagneticperformanceimpact.Thetradeoffofcomplexityversusperformanceassociatedwithusingstrengtheningribsinthemagnetcavitiesisdiscussed.Thesensitivityofthemechanicaldesignlimitationstotherotor-shaftmountingmechanismisalsohighlighted.Theseeffectsarethenanalyzedusingfinite-elementanalysisfora150-Nm/6-kWintegratedstarter/alternatordesignedforoperationupto6000r/minwithanannularrotortoaccommodateatorqueconverterorclutchassembly.Thisexampledemonstratesthatitispossibletosignificantlyimprovetherotorsstructuralintegrityusingthetechniquesdescribedinthispaperwithonlyaverymodestimpactontheprojectedmachinedrivecost.IndexTermsElectricalsteel,finite-elementanalysis(FEA),highspeed,interiorpermanent-magnet(IPM)synchronousmachine,laminations,magneticsaturation.I.INTRODUCTIONROTORDESIGNandconstructionofinteriorperma-nent-magnet(IPM)machinesisachallengingtaskduetotheconflictingcharacteristicsofimprovedperformanceandrotorcomplexity.IPMmachinesareofinterestbecausetheyareparticularlyattractivefromaperformancestandpointintractionandspindleapplications1,2.IPMmachinescanbedesignedwithwide,andtheoreticallyinfinite,speedrangesforconstantpoweroperationwithexcellentinverterutilization.ThisisachievedthroughuseofasalientrotorgeometrywithlimitedPaperIPCSD03084,presentedatthe2001IEEEInternationalElectricMa-chinesandDrivesConference,Cambridge,MA,June1720,andapprovedforpublicationintheIEEETRANSACTIONSONINDUSTRYAPPLICATIONSbytheElectricMachinesCommitteeoftheIEEEIndustryApplicationsSociety.Man-uscriptsubmittedforreviewNovember5,2002andreleasedforpublicationJan-uary20,2004.ThisworkwassupportedbytheMITConsortiumonAdvancedAutomotiveElectrical/ElectronicComponentsandSystems.E.C.LovelaceiswithSatConTechnologyCorporation,Cambridge,MA02142lUSA(e-mail:).T.M.JahnsiswiththeWisconsinElectricMachinesandPowerElectronicsConsortium,DepartmentofElectricalandComputerEngineering,UniversityofWisconsin,Madison,WI53706-1691USA(e-mail:).T.A.KeimandJ.H.LangarewiththeLaboratoryforElectromagneticandElectronicSystems,DepartmentofElectricalEngineeringandComputerScience,MassachusettsInstituteofTechnology,Cambridge,MA02139USA(e-mail:,).DigitalObjectIdentifier10.1109/TIA.2004.827440fluxcontributionfromPMsburiedwithintherotorstructure.Toachievethedesireddegreeofsaliency,speciallaminationdesignandassemblystrategiesaretypicallyrequiredcomparedtothoserequiredforcompetingmachinetypessuchassurfacePMandinductionmachines.TherotordesignstrategiesforIPMmachinescangenerallybedividedintoaxiallyandradiallylaminatedconfigurations,eachwithitsownadvantages3,4.Theaxiallylaminatedrotorisconstructedusingmanyalternatinglayersofsoftandhardmag-neticsheetsthatarelaidalongtheaxisofthemachine,eachbentandindividuallysizedtoformthepolesoftherotor1.Thisdesignapproachcanachievehigh-inductancesaliencyra-tiosinexcessof10:1.However,theaxiallylaminatedrotorisrelativelyexpensivetomanufactureduetothesortedcut-ting,shaping,andassemblyofthemanydifferentlaminationsthatmustbeemployed.Furthermore,aconstrainingrotorsleevemaybenecessaryforhigh-speedoperationtopreventlamina-tionintrusionsintotheairgap.Suchsleevestypicallyreducethesaliencyduetotheirfinitethicknessesandoftenincreaselossesduetoeddycurrentswhenhigh-strengthstainlesssteel(e.g.,Inconel)ischosenforthesleevematerial.Bycontrast,radiallylaminatedrotorsaretypicallydesignedwith14layersofhardmagneticmaterialineachpole.Eachlamination,aswithotherconventionalmachinetypes,ispunchedorcutasasingleunitarypieceforthecrosssectionoftherotor.Cavitiesarepunchedorcutintotherotorlaminations,andthemagnetmaterialisinsertedintothesecavities.ThelaminationscanbestackedusingconventionalmeanssothattherotorisgenerallyeasiertomanufacturethanitsaxiallylaminatedIPMcounterpart.However,adoptionoftheradiallylaminatedrotorcomesattheexpenseofsaliencywithtypicalinductanceratiosrangingfrom1.5upto10:1,dependingonthenumberofmagnetcavitylayersandtheirconfiguration.Forgoodelectromagneticperfor-mance,itisnecessarytominimizethesteelbridgessurroundingthemagneticcavitiesthatarenecessarytolinktherotorironsegmentsintoaunitarylamination.Eachbridgeeffectivelycre-atesamagneticshortciruitacrossthePMs,therebyreducingthemagnetscontributiontotheoverallair-gapflux.Thispaperexaminesthemechanicaldesignissuesofcon-ventionally(alsoreferredtoastransverseorradially)laminatedIPMrotors.Onlythecentrifugalforceisconsideredasthisislikelytobethedominantsourceofmechanicalstressinhigh-speeddesigns.Eachofseveralkeyrotordesignfeaturesareex-aminedinturnwithrespecttotheirinfluenceontherotorstress0093-9994/04$20.002004IEEELOVELACEetal.:CONVENTIONALLYLAMINATED,HIGH-SPEED,IPMSYNCHRONOUSMACHINEROTORS807Fig.1.Crosssectionofa12-poleIPMmachine.stateandelectromagneticperformance.Designstrategieswithrespecttofeaturesthatcanmitigatetheresultantmechanicalstressstatearealsopresented.Thediscussionissubstantiatedthroughfinite-elementanalysis(FEA)toverifythearguments.AnIPMrotordesignforanintegratedstarter/generator(ISG)applicationisusedthroughoutthepapertoillustratethesignif-icanceofthesemechanicalissues57.Acrosssectionfora12-poletwo-layerdesignisshowninFig.1.Inparticular,themechanicalstressstateofthisrotorisalimitingdesigncon-straintduetothehighrotortipspeedoperationthatisrequiredofannulardirect-driveautomotivemachinery.ThepertinentdesignspecificationsforthisISGdesignare:6000-r/minmaximumoperatingspeed;10000-r/mindesignburstspeed;minimumrotorinnerdiameter(ID)mm;maximumstatorouterdiameter(OD)mm;bondedPMmaterialincavities.II.MECHANICALDESIGNOFIPMROTORSForthepurposeofthisdiscussion,themechanicaldesignpointcorrespondstotheapplicationspecificationthatproducestheworstcasemechanicalstressintheIPMrotor.Theassump-tionsemployedinthisdevelopmentareasfollows:steady-statespeedconditionsonly;temperatureeffectsneglected;baselinecorematerial:M1929-gageelectricalsteel;yieldindicatedbyplanarVonMisesstress;forcesofelectromagneticoriginconsiderednegligible;vibrationandrotorshaftdynamicalforcesneglected.Withtheseassumptions,theforcesontherotoraredominatedbythesteady-statecentrifugalforcesatconstantspeed.There-fore,themechanicaldesignpointcorrespondstosteady-stateoperationatthedesignburstspeedvalue,10kr/min.AnalyticalcalculationsofthepeakstressesduetocentrifugalforcesactingonaradiallylaminatedIPMmachinerotorisachallengingtaskthatisnotattemptedinthispaperduetothecomplexityoftherotorlaminationdesignfeatures.However,thesepeakstressesaffecttheboundariesoftheoptimizationvariablesthatdeterminetheoptimalsystemdesign,soaquali-tativediscussionoftheresultantforcesduetoinertialloadingisappropriate.Thediscussionisconductedemployingwell-Fig.2.Sketchofresultantforcesonasolidrotor.Fig.3.SketchofresultantforcesonanIPMrotorwithonemagnet-filledcavity.knownprinciplesthatdescribethebehaviorofmaterialsunderstaticloading8,9.Fig.2showsasolidrotorcrosssectionwithannotationstoindicatethemajorforcesonthecoreduetocentrifugalloading.Atthesimplestlevel,neglectingthemagnetcavities,therotorresemblesahoopwithconstantcentrifugalloading.Undertheseconditions,anelementalmemberoftherotorisundertangentialtensionandradialcompression.Thin-walledhoopapproximationscanbejustifiedformod-elingtherotorbecauseofthenarrowdepthoftheISGrotorincomparisontotherotorID.Asaresult,therotorsegmentsmainlyexperiencetangentialtensionforces.Usingthisassump-tion,themajorfactorsaffectingthepeakstressaretheaverageradiusofthe“hoop”andtherotationalspeed.TheVonMisesstressincreasesaccordingtothesquareofeachofthesefactors.IftherotorcavitiesarenowconsideredasinFig.3,whichonlycontainsonecavitylayer,thesteelpolepiececenteredontheaxisisnowonlyattachedtotherestofthelaminationbythethinsteelbridgesateachend.Therefore,thecentrifugalloadingonthepolepieceisnotevenlydistributedaroundthe808IEEETRANSACTIONSONINDUSTRYAPPLICATIONS,VOL.40,NO.3,MAY/JUNE2004Fig.4.SketchofresultantforcesonanIPMrotorwithmultiplelayers.rotor“hoop,”causingasubstantiallyradiallydirectedinertialloadonthetworetainingbridges.ItshouldbenotedthatthebondedPMmaterialinthecavitywillalsocontributetothisloadingbecauseitisgenerallylessstiffthanthesteelandwill,therefore,contributeadditionalloadingagainsttheinsideedgeofthepolepiece.Therefore,theequivalentmagnetmass,inFig.3,mustbethesumofboththesteelpolepieceandthemagnet(theshadedportionofFig.3).Thebondedmagnetmaterialdoesnotprovideanysignificantbondingbetweenmagnetandsteeland,therefore,doesnottransmitforcefromtheyoketothepolepieces.Thechallengethenreducestomodelingthebridges,andthisislargelydependentonthespecificbridgeshape.Ifthebridgesareprincipallystraight,thenbeambendingapproximationsareappropriate.WhenmultiplelayersareconsideredasinFig.4,eachlayercanbeconsideredasbeingindependentlyloadediftheinter-cavitysteelsectionsarewideenoughtodistributeanystressconcentrationsbetweenadjacentbridges.Theloadoneachbridgeisthentheendloadintheradialdirectionduetotheinertialloadingontheremainingsectionofthepolepiecebetweenthebridgeunderconsiderationandtheaxis.Ifthebridgesoneachlayerhavethesamedimensions,thebridgeattheendofthelongestcavitywillbeunderthehigheststress.IfthecavityendsareroundedasshowninFig.5,thentheeffectivelengthofeach“beam”isreduced,andthesimplebeamapproximationsdescribedabovearenolongerreasonable.EachtaperedbridgenowresemblesaroundnotchstressconcentrationelementundersideloadingasshowninFig.5.Thepreciselocationofthepeakstresswithineachbridgeconfigurationwouldrequiresignificantanalysistodeterminewithoutresortingtonumericalsolutions.Inparticular,theequivalentmounting(fixedorsimple)attheendsofeach“beam”forthestraight-bridgemodelisnotclearlydefined.Iftheendsofeachbridgeexperienceminimalbendingcomparedtotherestofthebridge,itisreasonabletoassumethatthepeakstresswillbefoundattheends.Incontrast,thepeakstressintheroundedcavitystructuralmodelwouldbeexpectedattherootofthestressconcentration,correspondingtothemidpointofeachbridge.Fig.5.SketchofresultantforcesonanIPMrotorwithmultiplecavitylayerswithroundedtips.Atthisstage,somegeneralobservationscanbemadeaboutIPMrotordesigndecisionsthatwouldworsenorimprovethemechanicalstressconditions.MaximumrotorspeedA10%reductioninthemechan-icaldesignpointspeedwouldreducethepeakVonMisesstressbyalmost20%.RotorODSimilarly,a10%reductionintheradiusattherotorsurface,wherethebridgesarelocated,wouldalsoreducethestressbya20%factor.RoundedbridgesThe“beam”stressesarereducedasthe“beam”getsshorterwithallotherdimensionsequal.Basedonthecharacteristicsofthenotchstressconcen-trationmodel,acircularlyroundedbridgeshapeshouldnearlyminimizethepeakstress.SmallerpolepiecesA10%reductionofthedeflectingpolepiecemassperunitaxiallengthwillreducethestressalmostlinearly.Thiscanbeachievedbyreducingthefrac-tionofthepolepitchthatthecavitiesspan.Increasingthenumberofmachinepolescanproducethesameeffect.StrengtheningribAddingaribredistributesthecen-trifugalloadfromthepolepieceresultinginasignificantimprovementinthestressstate.Aribthatisaddedtothelaminationgeometryacrosstheaxisofeachcavityresiststhecentrifugalmotionofthepolemassesthroughtensionratherthanbending.Anotherfactorintheresultantforcescausedbytheinertialloadingistheeffectthattheradialdeflectionoftheentirerotorhasonthemagnitudeofthetensilecomponentofhoopstress.Thehooptensioninthebridgeisduetostretchingastherotorexpandsintotheairgapathigherspeeds.TheimplicitboundaryconditionsinhoopstresscalculationsarethattherotorIDandODboundariesareunconstrained.Asaresult,reductionofthedeflectionateitherboundarywillreducetheexpansionoftherotoratthebridgeradiusandthereforealsoreducethehoopstresscomponentofloading.ConstrainingtherotorODisproblematicsinceitwouldre-quireamaterialsubstantiallystifferthansteeltodecreasetheradialdeflectionunderinertialload.Furthermore,addinganyLOVELACEetal.:CONVENTIONALLYLAMINATED,HIGH-SPEED,IPMSYNCHRONOUSMACHINEROTORS809Fig.6.RotorhubdesignusingdovetailedjointsbetweenthehubandrotorID.Fig.7.Rotorhubdesignusingaxialboltsthroughthestacktoanendplate.materialintheairgapthatadverselyaffectstheelectromagneticsaliencyoftheoriginalrotorwoulddegradetheperformanceofthemachine.ConstrainingtherotorIDisamorefeasiblesolutionforimprovingthestructuralintegrityoftherotor.Sincethereisalreadyahubthatmustattachtherotortothecrankshaft,thereisanopportunitytospeciallydesignthehubtoretaintherotorradially.Typically,ahubisonlydesignedtotransmitthetorqueinthecircumferentialdirectionaswouldoccurwithahubthatispressfitinsidetherotor.Apressfit,though,doesnothingtoconstraintherotorIDandsowouldnotmitigatethemaximumstressatthemechanicaldesignpoint.IftherearenospaceconstraintsinsidetherotorID,avarietyofdifferenthubfixturesmightbeconsidered.Aweldedhubmayworkbutcouldalterthemagneticpropertiesofthecore.OnealternativeisanaxialcylinderthatmateswiththerotorIDusingdovetailedsurfacesasshowninFig.6.Anotheralternativeistoconstructanendplatewithstudsdistributedaroundthecircumferenceoftheendplate(oneperpole)asshowninFig.7.Thelaminationswouldbecutwithaholealongeachaxiswherethecoreiswidest(i.e.,therenocavitiesalongtheaxis),andthenassembledontothestuds.Thisboltedsystemisonlypracticalifsufficientbolttensioncanbedevelopedandmaintainedsothattheradialloadistakenupbytheendplate.Ifadequatebolttensionisnotdeveloped,therewillbesignificantside-loadingonthestudsthatwouldlikelyresultinshearingoffthestudsatthesurfaceoftheendplate.Theadvantageofthedovetailfixture(Fig.6)oranyfixturealongtherotorIDsurfaceisthatitisstructurallyrobustandnearlysymmetriciftheradialplateportionofthehubislo-catedaxiallynearthemidpointoftherotorstack.Itschiefdis-advantageisthatthehubcylinderhasafinitethicknessthatmaymakeitnecessarytoreducetheavailablespacefortherotorlaminations.Incontrast,theadvantageofanendplatestructure(Fig.7)isthattheradialplateisattheendofthestackanddoesnotuseanyinternalrealestateinsidetheIDthatmightotherwisebere-servedforaclutchortorqueconverter.Asaresult,thisapproachmayyieldthemostcompactISGconfiguration.Furthermore,theabsenceoftheinternalhuballowstherotortobedesignedwiththesmallestpossibleIDandOD,whichwillreducethepeakstress(squaredimpactonstress).However,anyendplateapproachmustsolvethepracticalinstallationproblemsassoci-atedwithheavilyloadedstudsandcompressedlaminations.InSectionIII,theend

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論