外文翻譯---不完整測(cè)量數(shù)據(jù)的概念建構(gòu)  英文版.pdf_第1頁(yè)
外文翻譯---不完整測(cè)量數(shù)據(jù)的概念建構(gòu)  英文版.pdf_第2頁(yè)
外文翻譯---不完整測(cè)量數(shù)據(jù)的概念建構(gòu)  英文版.pdf_第3頁(yè)
外文翻譯---不完整測(cè)量數(shù)據(jù)的概念建構(gòu)  英文版.pdf_第4頁(yè)
外文翻譯---不完整測(cè)量數(shù)據(jù)的概念建構(gòu)  英文版.pdf_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

unsuspectedrelationshipswhichareofinterestorvaluetothedatabasesowners,ordataminers9.Duetothelargenumberofdimensionalityandthehugevolumeofdata,traditionalstatisticalmethodshavetheirlimitationsindatamining.Tomeetthechallengeofdatamining,articialintelligencebasedhumancomputerinteractivetechniqueshavebeenwidelyusedindatamining3,16.*ConceptualconstructiononincompletesurveydataShouhongWanga,*,HaiWangbaDepartmentofMarketing/BusinessInformationSystems,CharltonCollegeofBusiness,UniversityofMassachusettsDartmouth,285OldWestportRoad,NorthDartmouth,MA02747-2300,USAbDepartmentofComputerScience,UniversityofToronto,Toronto,ON,CanadaM5S3G4Received22March2003;receivedinrevisedform9September2003;accepted20October2003Availableonline26November2003AbstractTherawsurveydatafordataminingareoftenincomplete.Theissuesofmissingdatainknowledgediscoveryareoftenignoredindatamining.Thisarticlepresentstheconceptualfoundationsofdataminingwithincompletesurveydata,andproposesqueryprocessingforknowledgediscoveryandasetofqueryfunctionsfortheconceptualconstructioninsurveydatamining.Throughacase,thispaperdemonstratesthatconceptualconstructiononincompletedatacanbeaccomplishedbyusingarticialintelligencetoolssuchasself-organizingmaps.C2112003ElsevierB.V.Allrightsreserved.Keywords:Incompletesurveydata;Surveydatamining;Conceptualconstruction;Self-organizingmaps;Clusteranalysis;Knowledgediscovery;Queryprocessing1.IntroductionDataminingistheprocessoftrawlingthroughdatainthehopeofidentifyinginterpretablepatterns.D/locate/datakData&KnowledgeEngineering49(2004)311323Correspondingauthor.E-mailaddresses:(S.Wang),(H.Wang).0169-023X/$-seefrontmatterC2112003ElsevierB.V.Allrightsreserved.doi:10.1016/j.datak.2003.10.007aneectivemethodindealingwithhigh-dimensionaldata6,12.Moreimportantly,theSOMmethodprovidesabaseforthevisibilityofclustersofhigh-dimensionaldata.Thisfeatureisnot312S.Wang,H.Wang/Data&KnowledgeEngineering49(2004)311323availableinanyotherdataanalysismethods.Itallowsthedataminertoanalyzeclustersbasedontheproblemdomain.Surveyisoneofthecommondataacquisitionmethodsfordatamining4.Indatamining,onecanrarelyndasurveydatasetthatcontainscompleteentriesofeachobservationforallofthevariables.Commonly,surveysandquestionnairesareoftenonlypartiallycompletedbyrespon-dents.Theextentofdamageofmissingdataisunknownwhenitisvirtuallyimpossibletoreturnthesurveyorquestionnairestothedatasourceforcompletion,butisoneofthemostimportantpartsofknowledgefordataminingtodiscover.Infact,missingdataisanimportantdebatableissueintheknowledgeengineeringeld15.Inminingasurveydatabasewithincompletedatathroughclusteranalysis,patternsofthemissingdataaswellasthepotentialimpactsofthesemissingdataontheminingresultsareknowledge.Forinstance,adatamineroftenwishestoknowhowreliableaclusteranalysisis;whenandwhycertaintypesofvaluesareoftenmissing;whatvariablesarecorrelatedintermsofhavingmissingvaluesatthesametime.Thesevaluablepiecesofknowledgecanbediscoveredonlyafterthemissingpartofthedatasetisfullyexplored.Thispaperdiscussestheissueofmissingdatainminingsurveydatabasesforknowledgedis-covery,presentstheconceptualfoundationsofconceptualconstruction,andproposesasetofqueryfunctionsforconceptualconstructioninSOM-baseddatamining.Therestofthepaperisorganizedasfollows.Section2discussestheissuesofmissingdatarelatedtodatamining.Section3introducesSOMforconceptualconstructiononincompletedata.Section4suggestsfourconceptsasknowledgediscoveryindataminingwithincompletedata.ItprovidesaschemeofconceptualconstructiononincompletedatausingSOM.Section5proposesaquerytoolthatisusedtomanipulateSOMforconceptualconstruction.Section6presentsacasestudythatappliesthequerytooltomanipulatetheSOMfortheconceptualconstructiononastudentopinionsurveydataset.Finally,Section7oersconcludingremarks.2.IssuesofmissingdataIncompletedatasetsareubiquitousindatamining.Therehavebeenmanytreatmentsofmissingdata.Oneoftheconvenientsolutionstoincompletedataistoeliminatefromthedatasetthoserecordsthataremissingvalues.This,however,ignorespotentiallyusefulinformationinthoserecords.Incaseswheretheproportionofmissingdataislarge,theconclusionsdrawnfromthescreeneddatasetaremorelikelybiasedormisleading.Therehavebeenmanynon-statisticaltechniquesfordatamining.Theself-organizingmaps(SOM)methodbasedonKohonenneuralnetwork12isoneofthepromisingtechniques.SOM-basedclustertechniqueshaveadvantagesoverothermethodsfordatamining.Dataminingtypicallydealswithveryhigh-dimensionaldata.Thatis,anobservationinthedatabasefordataminingistypicallydescribedbyalargenumberofvariables.Thecurseofdimensionalityturnsstatisticalcorrelationsofdatainsignicant,andthusmakesstatisticalmethodspowerless.TheSOMmethod,however,doesnotrelyonanyassumptionsofstatisticaltests,andisconsideredasS.Wang,H.Wang/Data&KnowledgeEngineering49(2004)311323313Anothersimpleapproachofdealingwithmissingdataistousegenericunknownforallmissingdataitems.Indatamining,unspeciedunknownforallmissingdataitemsoftencausesconfusionandmisinterpretation.Thethirdsolutiontodealingwithmissingdataistoestimatethemissingvalueinthedataeld.Inthecaseoftimeseriesdata,interpolationbasedontwoadjacentdatapointsthatareobservedispossible.Ingeneralcases,onemayusesomeexpectedvalueinthedataeldbasedonstatisticalmeasures7.However,indatamining,surveydataarecommonlyofthetypesofranking,cat-egory,multiplechoices,andbinary.Interpolationanduseofanexpectedvalueforaparticularmissingdatavariableinthesecasesaregenerallyinadequate.Moreimportantly,research2indicatesthatameaningfultreatmentofmissingdatashallalwaysbeindependentoftheproblembeinginvestigated.Morerecently,therehavebeenmathematicalmethodsforndingtheaggregateconceptualdirectionsofadatasetwithmissingdata(e.g.,1,10).Thesemethodsmakethemselvesdistinctfromthetraditionalapproachesoftreatingmissingdatabyfocusingonthecollectiveeectsofthemissingdatainsteadofindividualmissingvalues.Thissuperiorfeatureofthesemethodscanbebestbuiltupfordataminingonincompletedata.However,thesestatisticalmethodshavelimi-tations.First,itisassumedthatmissingvaluesoccurinarandomfashionorfollowacertaindistributionfunctions.Theirstrongassumptionsaboutthedistributionsofdataareofteninvalidespeciallyforcasesofsurveywithincompletedata.Second,thesemathematicalmodelsaredata-driven,insteadofproblem-domain-driven.Infact,asinglegenericconceptualconstructionalgorithmisinsucienttohandleavarietyofgoalsofdataminingsinceagoalofdataminingisoftenrelatedtoitsspecicproblemdomain.Knowledgediscoveryindatabasesisthenon-trivialprocessofidentifyingvalid,novel,potentiallyuseful,andultimatelyunderstandablepatternsofdata8.Followingthisdenition,thisresearchemphasizestwoaspectsofconceptconstructionindataminingwithincompletedata.First,thecriteriaofvalidity,novelty,usefulnessoftheconceptstobeconstructedindataminingwithincompletedatacouldbeproblem-dependent.Thatis,theinterestofadatapatterndependsonthedatamineranddoesnotsolelydependontheestimatedstatisticalstrengthofthepattern14.Second,theconceptualconstructionbasedontheincompletedataisaccomplishedthroughheuristicsearchincombinatorialspacesbuiltoncomputerandhumancognitivetheories13.Humancomputercollaborationconceptconstructionistheinteractiveprocessbetweenthedataminerandcomputertoextractnovel,plausible,useful,relevant,andinterestingknowledgeassociatedwiththemissingdata.Inourview,dataminingdiersfromtraditionalstatisticsindealingmissingdatainmanyways.(1)Dataminingattemptstoextractunsuspectedandpotentiallyusefulpatternsfromthedataforthedataminerswithnovelgoalsrelatedtothemissingdata,ratherthantoestimatetheindi-vidualvaluesofthemissingdata.(2)Dataminingisahumancenteredprocessimplementedthroughknowledgediscoveryloopscoupledwithhumancomputerinteractiontoperceivetheimpactofthemissingdataatanaggregatelevel,ratherthanaone-waymathematicalderivationbasedonunveriedassump-tions.3.Toolforconceptualconstruction:self-organizingmaps(SOM)Givenalargesetofhigh-dimensionalsurveysamples,thereusuallybeasignicantnumberofobservationshavemissingvalues;however,notallmissingdataarerelevanttothedataminerC213sinterest.Hence,anysimplebrute-forcesearchmethodformissingdataisnotonlyinfeasibleforahugeamountofdata,butalsohelplesswhenthedatamineristoidentifyproblems,ordevelopconcepts,throughdatamining.Toidentifyproblemsordevelopconcepts,thedataminerneedsatooltoobserveunsuspectedpatternsoftheavailabledataandthemissingparts.Self-organizingmaps(SOM)12havebeenwidelyusedforclustering,sinceSOMaremorecomputationallyecientthanthepopulark-meansclusteringalgorithm.Moreimportantly,SOMprovidedatavisualizationforthedataminertoviewhigh-dimensionaldata11.Research14,16314S.Wang,H.Wang/Data&KnowledgeEngineering49(2004)311323indicatesthatSOMareeectiveindataminingfortheidenticationofunsuspectedpatternofthedata.Specically,SOMcanbeusedforclusteranalysisonmultivariatesurveydata.ThisstudytakesonestepfurtherandusesSOMasatoolforconceptconstructionrelatedtomissingdata.Conceptualconstructiononincompletedataistoinvestigatethepatternsofthemissingdataaswellasthepotentialimpactsofthesemissingdataontheminingresultsbasedonlyonthecompletedata.Asseenlaterinourillustrativeexamples,SOMprovideamechanismforhumancomputercollaborationtoconstructconceptsfromthedatawithmissingvalues.SOMcanlearncertainusefulfeaturesfo

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論