傅立葉變換在工程上的應(yīng)用_第1頁
傅立葉變換在工程上的應(yīng)用_第2頁
傅立葉變換在工程上的應(yīng)用_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

傅立葉變換在工程上的應(yīng)用摘要:傅里葉變換是數(shù)字信號處理領(lǐng)域一種很重要的算法, 傅里葉變換在物理學(xué)、數(shù)論、組合數(shù)學(xué)、信號處理、概率論、統(tǒng)計學(xué)、密碼學(xué)、聲學(xué)、光學(xué)、海洋學(xué)、結(jié)構(gòu)動力學(xué)等領(lǐng)域都有著廣泛的應(yīng)用。而小波分析應(yīng)用于機械故障振動信號分析的優(yōu)越性及其應(yīng)用的進(jìn)展和特點,小波變換技術(shù)在旋轉(zhuǎn)機械動靜碰摩故障診斷的理論研究和實際應(yīng)用,最后提出小波分析應(yīng)用于故障診斷存在的問題以及對其應(yīng)用前景的展望。關(guān)鍵詞:傅里葉變換與應(yīng)用 快速傅里葉變換 小波分析 小波應(yīng)用傅里葉變換的典型用途是將信號分解成幅值分量和頻率分量)。傅里葉變換將原來難以處理的時域信號轉(zhuǎn)換成了易于分析的頻域信號(信號的頻譜),可以利用一些工具對這些頻域信號進(jìn)行處理、加工。最后還可以利用傅里葉反變換將這些頻域信號轉(zhuǎn)換成時域信號。要知道傅立葉變換算法的意義,首先要了解傅立葉原理的意義。傅立葉原理表明:任何連續(xù)測量的時序或信號,都可以表示為不同頻率的正弦波信號的無限疊加。而根據(jù)該原理創(chuàng)立的傅立葉變換算法利用直接測量到的原始信號,以累加方式來計算該信號中不同正弦波信號的頻率、振幅和相位。傅里葉變換能將滿足一定條件的某個函數(shù)表示成三角函數(shù)(正弦和/或余弦函數(shù))或者它們的積分的線性組合。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。最初傅里葉分析是作為熱過程的解析分析的工具被提出的。和傅立葉變換算法對應(yīng)的是反傅立葉變換算法。該反變換從本質(zhì)上說也是一種累加處理,這樣就可以將單獨改變的正弦波信號轉(zhuǎn)換成一個信號。因此,可以說,傅立葉變換將原來難以處理的時域信號轉(zhuǎn)換成了易于分析的頻域信號(信號的頻譜),可以利用一些工具對這些頻域信號進(jìn)行處理、加工。最后還可以利用傅立葉反變換將這些頻域信號轉(zhuǎn)換成時域信號。從現(xiàn)代數(shù)學(xué)的眼光來看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個函數(shù)表示成正弦基函數(shù)的線性組合或者積分。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換??焖俑凳献儞Q 英文名是fast Fourier transform快速傅氏變換(FFT)是離散傅氏變換(DFT)的快速算法,它是根據(jù)離散傅氏變換的奇、偶、虛、實等特性,對離散傅立葉變換的算法進(jìn)行改進(jìn)獲得的。它對傅氏變換的理論并沒有新的發(fā)現(xiàn),但是對于在計算機系統(tǒng)或者說數(shù)字系統(tǒng)中應(yīng)用離散傅立葉變換,可以說是進(jìn)了一大步。設(shè)x(n)為N項的復(fù)數(shù)序列,由DFT變換,任一X(m)的計算都需要N次復(fù)數(shù)乘法和N-1次復(fù)數(shù)加法,而一次復(fù)數(shù)乘法等于四次實數(shù)乘法和兩次實數(shù)加法,一次復(fù)數(shù)加法等于兩次實數(shù)加法,即使把一次復(fù)數(shù)乘法和一次復(fù)數(shù)加法定義成一次“運算”(四次實數(shù)乘法和四次實數(shù)加法),那么求出N項復(fù)數(shù)序列的X(m),即N點DFT變換大約就需要N2次運算。當(dāng)N=1024點甚至更多的時候,需要N2=次運算,在FFT中,利用WN的周期性和對稱性,把一個N項序列(設(shè)N=2k,k為正整數(shù)),分為兩個N/2項的子序列,每個N/2點DFT變換需要(N/2)2次運算,再用N次運算把兩個N/2點的DFT變換組合成一個N點的DFT變換。這樣變換以后,總的運算次數(shù)就變成N+2(N/2)2=N+N2/2。繼續(xù)上面的例子,N=1024時,總的運算次數(shù)就變成了次,節(jié)省了大約50%的運算量。而如果我們將這種“一分為二”的思想不斷進(jìn)行下去,直到分成兩兩一組的DFT運算單元,那么N點的DFT變換就只需要Nlog2N次的運算,N在1024點時,運算量僅有10240次,是先前的直接算法的1%,點數(shù)越多,運算量的節(jié)約就越大,這就是FFT的優(yōu)越性。在數(shù)學(xué)領(lǐng)域,也是這樣,盡管最初傅立葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特征。任意的函數(shù)通過一定的分解,都能夠表示為正弦函數(shù)的線性組合的形式,而正弦函數(shù)在物理上是被充分研究而相對簡單的函數(shù)類,這一想法跟化學(xué)上的原子論想法何其相似!奇妙的是,現(xiàn)代數(shù)學(xué)發(fā)現(xiàn)傅立葉變換具有非常好的性質(zhì),使得它如此的好用和有用,讓人不得不感嘆造物的神奇: 1. 傅立葉變換是線性算子,若賦予適當(dāng)?shù)姆稊?shù),它還是酉算子; 2. 傅立葉變換的逆變換容易求出,而且形式與正變換非常類似; 3. 正弦基函數(shù)是微分運算的本征函數(shù),從而使得線性微分方程的求解可以轉(zhuǎn)化為常系數(shù)的代數(shù)方程的求解.在線性時不變的物理系統(tǒng)內(nèi),頻率是個不變的性質(zhì),從而系統(tǒng)對于復(fù)雜激勵的響應(yīng)可以通過組合其對不同頻率正弦信號的響應(yīng)來獲取; 4. 著名的卷積定理指出:傅立葉變換可以化復(fù)雜的卷積運算為簡單的乘積運算,從而提供了計算卷積的一種簡單手段; 5. 離散形式的傅立葉變換可以利用數(shù)字計算機快速的算出(其算法稱為快速傅立葉變換算法(FFT). 正是由于上述的良好性質(zhì),傅里葉變換在物理學(xué)、數(shù)論、組合數(shù)學(xué)、信號處理、概率、統(tǒng)計、密碼學(xué)、聲學(xué)、光學(xué)等領(lǐng)域都有著廣泛的應(yīng)用。小波分析 (Wavelet)小波分析的應(yīng)用是與小波分析的理論研究緊密地結(jié)合在一起地?,F(xiàn)在,它已經(jīng)在科技信息產(chǎn)業(yè)領(lǐng)域取得了令人矚目的成就。電子信息技術(shù)是六大高新技術(shù)中重要的一個領(lǐng)域,它的重要方面是圖像和信號處理?,F(xiàn)今,信號處理已經(jīng)成為當(dāng)代科學(xué)技術(shù)工作的重要部分,信號處理的目的就是:準(zhǔn)確的分析、診斷、編碼壓縮和量化、快速傳遞或存儲、精確地重構(gòu)(或恢復(fù))。從數(shù)學(xué)地角度來看,信號與圖像處理可以統(tǒng)一看作是信號處理(圖像可以看作是二維信號),在小波分析地許多分析的許多應(yīng)用中,都可以歸結(jié)為信號處理問題?,F(xiàn)在,對于其性質(zhì)隨實踐是穩(wěn)定不變的信號,處理的理想工具仍然是傅立葉分析。但是在實際應(yīng)用中的絕大多數(shù)信號是非穩(wěn)定的,而特別適用于非穩(wěn)定信號的工具就是小波分析。小波分析是當(dāng)前應(yīng)用數(shù)學(xué)和工程學(xué)科中一個迅速發(fā)展的新領(lǐng)域,經(jīng)過近10年的探索研究,重要的數(shù)學(xué)形式化體系已經(jīng)建立,理論基礎(chǔ)更加扎實。與Fourier變換相比,小波變換是空間(時間)和頻率的局部變換,因而能有效地從信號中提取信息。通過伸縮和平移等運算功能可對函數(shù)或信號進(jìn)行多尺度的細(xì)化分析,解決了Fourier變換不能解決的許多困難問題。小波變換聯(lián)系了應(yīng)用數(shù)學(xué)、物理學(xué)、計算機科學(xué)、信號與信息處理、圖像處理、地震勘探等多個學(xué)科。數(shù)學(xué)家認(rèn)為,小波分析是一個新的數(shù)學(xué)分支,它是泛函分析、Fourier分析、樣調(diào)分析、數(shù)值分析的完美結(jié)晶;信號和信息處理專家認(rèn)為,小波分析是時間尺度分析和多分辨分析的一種新技術(shù),它在信號分析、語音合成、圖像識別、計算機視覺、數(shù)據(jù)壓縮、地震勘探、大氣與海洋波分析等方面的研究都取得了有科學(xué)意義和應(yīng)用價值的成果。事實上小波分析的應(yīng)用領(lǐng)域十分廣泛,它包括:數(shù)學(xué)領(lǐng)域的許多學(xué)科;信號分析、圖像處理;量子力學(xué)、理論物理;軍事電子對抗與武器的智能化;計算機分類與識別;音樂與語言的人工合成;醫(yī)學(xué)成像與診斷;地震勘探數(shù)據(jù)處理;大型機械的故障診斷等方面;例如,在數(shù)學(xué)方面,它已用于數(shù)值分析、構(gòu)造快速數(shù)值方法、曲線曲面構(gòu)造、微分方程求解、控制論等。在信號分析方面的濾波、去噪聲、壓縮、傳遞等。在圖像處理方面的圖像壓縮、分類、識別與診斷,去污等。在醫(yī)學(xué)成像方面的減少B超、CT、核磁共振成像的時間,提高分辨率等。(1)小波分析用于信號與圖像壓縮是小波分析應(yīng)用的一個重要方面。它的特點是壓縮比高,壓縮速度快,壓縮后能保持信號與圖像的特征不變,且在傳遞中可以抗干擾?;谛〔ǚ治龅膲嚎s方法很多,比較成功的有小波包最好基方法,小波域紋理模型方法,小波變換零樹壓縮,小波變換向量壓縮等。(2)小波在信號分析中的應(yīng)用也十分廣泛。它可以用于邊界的處理與濾波、時頻分析、信噪分離與提取弱信號、求分形指數(shù)、信號的識別與診斷以及多尺度邊緣檢測等。(3)在工程技術(shù)等方面的應(yīng)用。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論