Chapter2 LinearTimeinvariantSystem 信號與系統(tǒng)教學(xué)課件_第1頁
Chapter2 LinearTimeinvariantSystem 信號與系統(tǒng)教學(xué)課件_第2頁
Chapter2 LinearTimeinvariantSystem 信號與系統(tǒng)教學(xué)課件_第3頁
Chapter2 LinearTimeinvariantSystem 信號與系統(tǒng)教學(xué)課件_第4頁
Chapter2 LinearTimeinvariantSystem 信號與系統(tǒng)教學(xué)課件_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2LinearTime InvariantSystems 2 1Discrete timeLTIsystem Theconvolutionsum 2 1 1TheRepresentationofDiscrete timeSignalsinTermsofImpulses 2 LinearTime InvariantSystems Ifx n u n then 2LinearTime InvariantSystems 2LinearTime InvariantSystems 2 1 2TheDiscrete timeUnitImpulseResponseandtheConvolutionSumRepresentationofLTISystems 1 UnitImpulse Sample Response UnitImpulseResponse h n 2LinearTime InvariantSystems 2 ConvolutionSumofLTISystem Solution Question n h n n k h n k x k n k x k h n k 2LinearTime InvariantSystems 2LinearTime InvariantSystems 2LinearTime InvariantSystems ConvolutionSum So ory n x n h n 3 CalculationofConvolutionSum TimeInversal h k h k TimeShift h k h n k Multiplication x k h n k Summing Example2 12 22 32 42 5 2LinearTime InvariantSystems 2 2Continuous timeLTIsystem Theconvolutionintegral 2 2 1TheRepresentationofContinuous timeSignalsinTermsofImpulses Define Wehavetheexpression Therefore 2LinearTime InvariantSystems 2LinearTime InvariantSystems or 2LinearTime InvariantSystems 2 2 2TheContinuous timeUnitimpulseResponseandtheconvolutionIntegralRepresentationofLTISystems 1 UnitImpulseResponse 2 TheConvolutionofLTISystem 2LinearTime InvariantSystems A Becauseof So wecanget ConvolutionIntegral ory t x t h t 2LinearTime InvariantSystems B ory t x t h t ConvolutionIntegral 2LinearTime InvariantSystems 2LinearTime InvariantSystems 3 ComputationofConvolutionIntegral TimeInversal h h TimeShift h h t Multiplication x h t Integrating Example2 62 8 2LinearTime InvariantSystems 2 3PropertiesofLinearTimeInvariantSystem Convolutionformula 2LinearTime InvariantSystems 2 3 1TheCommutativeProperty Discretetime x n h n h n x n Continuoustime x t h t h t x t 2LinearTime InvariantSystems 2 3 2TheDistributiveProperty Discretetime x n h1 n h2 n x n h1 n x n h2 n Continuoustime x t h1 t h2 t x t h1 t x t h2 t Example2 10 2LinearTime InvariantSystems 2 3 3TheAssociativeProperty Discretetime x n h1 n h2 n x n h1 n h2 n Continuoustime x t h1 t h2 t x t h1 t h2 t 2LinearTime InvariantSystems 2 3 4LTIsystemwithandwithoutMemory Memorylesssystem Discretetime y n kx n h n k n Continuoustime y t kx t h t k t Implythat x t t x t andx n n x n 2LinearTime InvariantSystems 2 3 5InvertibilityofLTIsystem Originalsystem h t Reversesystem h1 t So fortheinvertiblesystem h t h1 t t orh n h1 n n Example2 112 12 2LinearTime InvariantSystems 2 3 6CausalityforLTIsystem Discretetimesystemsatisfythecondition h n 0forn 0Continuoustimesystemsatisfythecondition h t 0fort 0 2LinearTime InvariantSystems 2 3 7StabilityforLTIsystem Definitionofstability Everyboundedinputproducesaboundedoutput Discretetimesystem If x n B theconditionfor y n Ais 2LinearTime InvariantSystems Continuoustimesystem If x t B theconditionfor y t Ais Example2 13 2LinearTime InvariantSystems 2 3 8TheUnitStepResponseofLTIsystem Discretetimesystem Continuoustimesystem 2LinearTime InvariantSystems 2 4CausalLTISystemsDescribedbyDifferentialandDifferenceEquation Discretetimesystem DifferentialEquationContinuoustimesystem DifferenceEquation 2LinearTime InvariantSystems 2 4 1LinearConstant CoefficientDifferentialEquation AgeneralNth orderlinearconstant coefficientdifferentialequation or andinitialcondition y t0 y t0 y N 1 t0 Nvalues 2LinearTime InvariantSystems 2 4 2LinearConstant CoefficientDifferenceEquation AgeneralNth orderlinearconstant coefficientdifferenceequation or andinitialcondition y 0 y 1 y N 1 Nvalues Example2 15 2LinearTime InvariantSystems 2 4 3BlockDiagramRepresentationsofFirst orderSystemsDescribedbyDifferentialandDifferenceEquation 1 DicretetimesystemBasicelements A AnadderB MultiplicationbyacoefficientC Anunitdelay 2LinearTime InvariantSystems Basicelements 2LinearTime InvariantSystems Example y n ay n 1 bx n 2LinearTime InvariantSystems 2 ContinuoustimesystemBasicelements A AnadderB MultiplicationbyacoefficientC An differentiator integrator 2LinearTime InvariantSystems Basicelements 2LinearTime InvariantSystems Example y t ay t bx t 2Lin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論