![八年級(jí)數(shù)學(xué)因式分解復(fù)習(xí)題1[1].doc_第1頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/14/3c9f37b5-81b3-42d7-a14d-ecac6d8fec54/3c9f37b5-81b3-42d7-a14d-ecac6d8fec541.gif)
![八年級(jí)數(shù)學(xué)因式分解復(fù)習(xí)題1[1].doc_第2頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/14/3c9f37b5-81b3-42d7-a14d-ecac6d8fec54/3c9f37b5-81b3-42d7-a14d-ecac6d8fec542.gif)
![八年級(jí)數(shù)學(xué)因式分解復(fù)習(xí)題1[1].doc_第3頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/14/3c9f37b5-81b3-42d7-a14d-ecac6d8fec54/3c9f37b5-81b3-42d7-a14d-ecac6d8fec543.gif)
![八年級(jí)數(shù)學(xué)因式分解復(fù)習(xí)題1[1].doc_第4頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/14/3c9f37b5-81b3-42d7-a14d-ecac6d8fec54/3c9f37b5-81b3-42d7-a14d-ecac6d8fec544.gif)
![八年級(jí)數(shù)學(xué)因式分解復(fù)習(xí)題1[1].doc_第5頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/14/3c9f37b5-81b3-42d7-a14d-ecac6d8fec54/3c9f37b5-81b3-42d7-a14d-ecac6d8fec545.gif)
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
本資料來源于七彩教育網(wǎng)全國初中(初二)數(shù)學(xué)競賽輔導(dǎo)第一講 因式分解(一)多項(xiàng)式的因式分解是代數(shù)式恒等變形的基本形式之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,是我們解決許多數(shù)學(xué)問題的有力工具因式分解方法靈活,技巧性強(qiáng),學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所必需的,而且對于培養(yǎng)學(xué)生的解題技能,發(fā)展學(xué)生的思維能力,都有著十分獨(dú)特的作用初中數(shù)學(xué)教材中主要介紹了提取公因式法、運(yùn)用公式法、分組分解法和十字相乘法本講及下一講在中學(xué)數(shù)學(xué)教材基礎(chǔ)上,對因式分解的方法、技巧和應(yīng)用作進(jìn)一步的介紹1運(yùn)用公式法在整式的乘、除中,我們學(xué)過若干個(gè)乘法公式,現(xiàn)將其反向使用,即為因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a22ab+b2=(ab)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2)下面再補(bǔ)充幾個(gè)常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)an-bn=(a-b)(an-1+an-2b+an-3b2+abn-2+bn-1)其中n為正整數(shù);(8)an-bn=(a+b)(an-1-an-2b+an-3b2-+abn-2-bn-1),其中n為偶數(shù);(9)an+bn=(a+b)(an-1-an-2b+an-3b2-abn-2+bn-1),其中n為奇數(shù)運(yùn)用公式法分解因式時(shí),要根據(jù)多項(xiàng)式的特點(diǎn),根據(jù)字母、系數(shù)、指數(shù)、符號(hào)等正確恰當(dāng)?shù)剡x擇公式例1 分解因式:(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)=-2xn-1yn(x2n)2-2x2ny2+(y2)2=-2xn-1yn(x2n-y2)2 =-2xn-1yn(xn-y)2(xn+y)2(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz)(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2(a-b)2+2c(a-b)+c2=(a-b+c)2本小題可以稍加變形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5) =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4) =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc本題實(shí)際上就是用因式分解的方法證明前面給出的公式(6)分析 我們已經(jīng)知道公式(a+b)3=a3+3a2b+3ab2+b3的正確性,現(xiàn)將此公式變形為a3+b3=(a+b)3-3ab(a+b)這個(gè)式也是一個(gè)常用的公式,本題就借助于它來推導(dǎo)解 原式=(a+b)3-3ab(a+b)+c3-3abc =(a+b)3+c3-3ab(a+b+c) =(a+b+c)(a+b)2-c(a+b)+c2-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca)說明 公式(6)是一個(gè)應(yīng)用極廣的公式,用它可以推出很多有用的結(jié)論,例如:我們將公式(6)變形為a3+b3+c3-3abc顯然,當(dāng)a+b+c=0時(shí),則a3+b3+c3=3abc;當(dāng)a+b+c0時(shí),則a3+b3+c3-3abc0,即a3+b3+c33abc,而且,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立如果令x=a30,y=b30,z=c30,則有等號(hào)成立的充要條件是x=y=z這也是一個(gè)常用的結(jié)論例3 分解因式:x15+x14+x13+x2+x+1分析 這個(gè)多項(xiàng)式的特點(diǎn)是:有16項(xiàng),從最高次項(xiàng)x15開始,x的次數(shù)順次遞減至0,由此想到應(yīng)用公式an-bn來分解解 因?yàn)閤16-1=(x-1)(x15+x14+x13+x2+x+1),所以說明 在本題的分解過程中,用到先乘以(x-1),再除以(x-1)的技巧,這一技巧在等式變形中很常用2拆項(xiàng)、添項(xiàng)法因式分解是多項(xiàng)式乘法的逆運(yùn)算在多項(xiàng)式乘法運(yùn)算時(shí),整理、化簡常將幾個(gè)同類項(xiàng)合并為一項(xiàng),或?qū)蓚€(gè)僅符號(hào)相反的同類項(xiàng)相互抵消為零在對某些多項(xiàng)式分解因式時(shí),需要恢復(fù)那些被合并或相互抵消的項(xiàng),即把多項(xiàng)式中的某一項(xiàng)拆成兩項(xiàng)或多項(xiàng),或者在多項(xiàng)式中添上兩個(gè)僅符合相反的項(xiàng),前者稱為拆項(xiàng),后者稱為添項(xiàng)拆項(xiàng)、添項(xiàng)的目的是使多項(xiàng)式能用分組分解法進(jìn)行因式分解例4 分解因式:x3-9x+8分析 本題解法很多,這里只介紹運(yùn)用拆項(xiàng)、添項(xiàng)法分解的幾種解法,注意一下拆項(xiàng)、添項(xiàng)的目的與技巧解法1 將常數(shù)項(xiàng)8拆成-1+9原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8)解法2 將一次項(xiàng)-9x拆成-x-8x原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8)解法3 將三次項(xiàng)x3拆成9x3-8x3原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8)解法4 添加兩項(xiàng)-x2+x2原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8)說明 由此題可以看出,用拆項(xiàng)、添項(xiàng)的方法分解因式時(shí),要拆哪些項(xiàng),添什么項(xiàng)并無一定之規(guī),主要的是要依靠對題目特點(diǎn)的觀察,靈活變換,因此拆項(xiàng)、添項(xiàng)法是因式分解諸方法中技巧性最強(qiáng)的一種例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1解 (1)將-3拆成-1-1-1原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3)(2)將4mn拆成2mn+2mn原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1)(3)將(x2-1)2拆成2(x2-1)2-(x2-1)2原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=(x+1)4+2(x+1)2(x-1)2+(x-1)4-(x2-1)2=(x+1)2+(x-1)22-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3)(4)添加兩項(xiàng)+ab-ab原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)b(a+b)+1+(ab+b2+1)=a(a-b)+1(ab+b2+1)=(a2-ab+1)(b2+ab+1)說明 (4)是一道較難的題目,由于分解后的因式結(jié)構(gòu)較復(fù)雜,所以不易想到添加+ab-ab,而且添加項(xiàng)后分成的三項(xiàng)組又無公因式,而是先將前兩組分解,再與第三組結(jié)合,找到公因式這道題目使我們體會(huì)到拆項(xiàng)、添項(xiàng)法的極強(qiáng)技巧所在,同學(xué)們需多做練習(xí),積累經(jīng)驗(yàn)3換元法換元法指的是將一個(gè)較復(fù)雜的代數(shù)式中的某一部分看作一個(gè)整體,并用一個(gè)新的字母替代這個(gè)整體來運(yùn)算,從而使運(yùn)算過程簡明清晰例6 分解因式:(x2+x+1)(x2+x+2)-12分析 將原式展開,是關(guān)于x的四次多項(xiàng)式,分解因式較困難我們不妨將x2+x看作一個(gè)整體,并用字母y來替代,于是原題轉(zhuǎn)化為關(guān)于y的二次三項(xiàng)式的因式分解問題了解 設(shè)x2+x=y,則原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5)說明 本題也可將x2+x+1看作一個(gè)整體,比如今x2+x+1=u,一樣可以得到同樣的結(jié)果,有興趣的同學(xué)不妨試一試?yán)? 分解因式:(x2+3x+2)(4x2+8x+3)-90分析 先將兩個(gè)括號(hào)內(nèi)的多項(xiàng)式分解因式,然后再重新組合解 原式=(x+1)(x+2)(2x+1)(2x+3)-90 =(x+1)(2x+3)(x+2)(2x+1)-90 =(2x2+5x+3)(2x2+5x+2)-90令y=2x2+5x+2,則原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1)說明 對多項(xiàng)式適當(dāng)?shù)暮愕茸冃问俏覀冋业叫略?y)的基礎(chǔ)例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2解 設(shè)x2+4x+8=y,則原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8)說明 由本題可知,用換元法分解因式時(shí),不必將原式中的元都用新元代換,根據(jù)題目需要,引入必要的新元,原式中的變元和新變元可以一起變形,換元法的本質(zhì)是簡化多項(xiàng)式例9 分解因式:6x4+7x3-36x2-7x+6解法1 原式=6(x4+1)7x(x2-1)-36x2=6(x4-2x2+1)+2x2+7x(x2-1)-36x2=6(x2-1)2+2x2+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=2(x2-1)-3x3(x2-1)+8x=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3)說明 本解法實(shí)際上是將x2-1看作一個(gè)整體,但并沒有設(shè)立新元來代替它,即熟練使用換元法后,并非每題都要設(shè)置新元來代替整體解法2 原式=x26(t2+2)+7t-36=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x22(x-1/x)-33(x-1/x)+8=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3)例10 分解因式:(x2+xy+y2)-4xy(x2+y2)分析 本題含有兩個(gè)字母,且當(dāng)互換這兩個(gè)字母的位置時(shí),多項(xiàng)式保持不變,這樣的多項(xiàng)式叫作二元對稱式對于較難分解的二元對稱式,經(jīng)常令u=x+y,v=xy,用換元法分解因式解 原式=(x+y)2-xy2-4xy(x+y)2-2xy令x+y=u,xy=v,則原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2練習(xí)一1分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x52分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+3233分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20第一講 因式分解(一)多項(xiàng)式的因式分解是代數(shù)式恒等變形的基本形式之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,是我們解決許多數(shù)學(xué)問題的有力工具因式分解方法靈活,技巧性強(qiáng),學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所必需的,而且對于培養(yǎng)學(xué)生的解題技能,發(fā)展學(xué)生的思維能力,都有著十分獨(dú)特的作用初中數(shù)學(xué)教材中主要介紹了提取公因式法、運(yùn)用公式法、分組分解法和十字相乘法本講及下一講在中學(xué)數(shù)學(xué)教材基礎(chǔ)上,對因式分解的方法、技巧和應(yīng)用作進(jìn)一步的介紹1運(yùn)用公式法在整式的乘、除中,我們學(xué)過若干個(gè)乘法公式,現(xiàn)將其反向使用,即為因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a22ab+b2=(ab)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2)下面再補(bǔ)充幾個(gè)常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)an-bn=(a-b)(an-1+an-2b+an-3b2+abn-2+bn-1)其中n為正整數(shù);(8)an-bn=(a+b)(an-1-an-2b+an-3b2-+abn-2-bn-1),其中n為偶數(shù);(9)an+bn=(a+b)(an-1-an-2b+an-3b2-abn-2+bn-1),其中n為奇數(shù)運(yùn)用公式法分解因式時(shí),要根據(jù)多項(xiàng)式的特點(diǎn),根據(jù)字母、系數(shù)、指數(shù)、符號(hào)等正確恰當(dāng)?shù)剡x擇公式例1 分解因式:(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)=-2xn-1yn(x2n)2-2x2ny2+(y2)2=-2xn-1yn(x2n-y2)2 =-2xn-1yn(xn-y)2(xn+y)2(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz)(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2(a-b)2+2c(a-b)+c2=(a-b+c)2本小題可以稍加變形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5) =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4) =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc本題實(shí)際上就是用因式分解的方法證明前面給出的公式(6)分析 我們已經(jīng)知道公式(a+b)3=a3+3a2b+3ab2+b3的正確性,現(xiàn)將此公式變形為a3+b3=(a+b)3-3ab(a+b)這個(gè)式也是一個(gè)常用的公式,本題就借助于它來推導(dǎo)解 原式=(a+b)3-3ab(a+b)+c3-3abc =(a+b)3+c3-3ab(a+b+c) =(a+b+c)(a+b)2-c(a+b)+c2-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca)說明 公式(6)是一個(gè)應(yīng)用極廣的公式,用它可以推出很多有用的結(jié)論,例如:我們將公式(6)變形為a3+b3+c3-3abc顯然,當(dāng)a+b+c=0時(shí),則a3+b3+c3=3abc;當(dāng)a+b+c0時(shí),則a3+b3+c3-3abc0,即a3+b3+c33abc,而且,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立如果令x=a30,y=b30,z=c30,則有等號(hào)成立的充要條件是x=y=z這也是一個(gè)常用的結(jié)論例3 分解因式:x15+x14+x13+x2+x+1分析 這個(gè)多項(xiàng)式的特點(diǎn)是:有16項(xiàng),從最高次項(xiàng)x15開始,x的次數(shù)順次遞減至0,由此想到應(yīng)用公式an-bn來分解解 因?yàn)閤16-1=(x-1)(x15+x14+x13+x2+x+1),所以說明 在本題的分解過程中,用到先乘以(x-1),再除以(x-1)的技巧,這一技巧在等式變形中很常用2拆項(xiàng)、添項(xiàng)法因式分解是多項(xiàng)式乘法的逆運(yùn)算在多項(xiàng)式乘法運(yùn)算時(shí),整理、化簡常將幾個(gè)同類項(xiàng)合并為一項(xiàng),或?qū)蓚€(gè)僅符號(hào)相反的同類項(xiàng)相互抵消為零在對某些多項(xiàng)式分解因式時(shí),需要恢復(fù)那些被合并或相互抵消的項(xiàng),即把多項(xiàng)式中的某一項(xiàng)拆成兩項(xiàng)或多項(xiàng),或者在多項(xiàng)式中添上兩個(gè)僅符合相反的項(xiàng),前者稱為拆項(xiàng),后者稱為添項(xiàng)拆項(xiàng)、添項(xiàng)的目的是使多項(xiàng)式能用分組分解法進(jìn)行因式分解例4 分解因式:x3-9x+8分析 本題解法很多,這里只介紹運(yùn)用拆項(xiàng)、添項(xiàng)法分解的幾種解法,注意一下拆項(xiàng)、添項(xiàng)的目的與技巧解法1 將常數(shù)項(xiàng)8拆成-1+9原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8)解法2 將一次項(xiàng)-9x拆成-x-8x原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8)解法3 將三次項(xiàng)x3拆成9x3-8x3原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8)解法4 添加兩項(xiàng)-x2+x2原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8)說明 由此題可以看出,用拆項(xiàng)、添項(xiàng)的方法分解因式時(shí),要拆哪些項(xiàng),添什么項(xiàng)并無一定之規(guī),主要的是要依靠對題目特點(diǎn)的觀察,靈活變換,因此拆項(xiàng)、添項(xiàng)法是因式分解諸方法中技巧性最強(qiáng)的一種例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1解 (1)將-3拆成-1-1-1原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3)(2)將4mn拆成2mn+2mn原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1)(3)將(x2-1)2拆成2(x2-1)2-(x2-1)2原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=(x+1)4+2(x+1)2(x-1)2+(x-1)4-(x2-1)2=(x+1)2+(x-1)22-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3)(4)添加兩項(xiàng)+ab-ab原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)b(a+b)+1+(ab+b2+1)=a(a-b)+1(ab+b2+1)=(a2-ab+1)(b2+ab+1)說明 (4)是一道較難的題目,由于分解后的因式結(jié)構(gòu)較復(fù)雜,所以不易想到添加+ab-ab,而且添加項(xiàng)后分成的三項(xiàng)組又無公因式,而是先將前兩組分解,再與第三組結(jié)合,找到公因式這道題目使我們體會(huì)到拆項(xiàng)、添項(xiàng)法的極強(qiáng)技巧所在,同學(xué)們需多做練習(xí),積累經(jīng)驗(yàn)3換元法換元法指的是將一個(gè)較復(fù)雜的代數(shù)式中的某一部分看作一個(gè)整體,并用一個(gè)新的字母替代這個(gè)整體來運(yùn)算,從而使運(yùn)算過程簡明清晰例6 分解因式:(x2+x+1)(x2+x+2)-12分析 將原式展開,是關(guān)于x的四次多項(xiàng)式,分解因式較困難我們不妨將x2+x看作一個(gè)整體,并用字母y來替代,于是原題轉(zhuǎn)化為關(guān)于y的二次三項(xiàng)式的因式分解問題了解 設(shè)x2+x=y,則原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5)說明 本題也可將x2+x+1看作一個(gè)整體,比如今x2+x+1=u,一樣可以得到同樣的結(jié)果,有興趣的同學(xué)不妨試一試?yán)? 分解因式:(x2+3x+2)(4x2+8x+3)-90分析 先將兩個(gè)括號(hào)內(nèi)的多項(xiàng)式分解因式,然后再重新組合解 原式=(x+1)(x+2)(2x+1)(2x+3)-90 =(x+1)(2x+3)(x+2)(2x+1)-90 =(2x2+5x+3)(2x2+5x+2)-90令y=2x2+5x+2,則原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1)說明 對多項(xiàng)式適當(dāng)?shù)暮愕茸冃问俏覀冋业叫略?y)的基礎(chǔ)例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2解 設(shè)x2+4x+8=y,則原式=y2+3xy+2x2=(y+2x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 師資共享與教育信息化建設(shè)及人才培養(yǎng)協(xié)議
- 盤扣式腳手架租賃與現(xiàn)場安全管理服務(wù)協(xié)議
- 電子煙企業(yè)產(chǎn)品召回與消費(fèi)者權(quán)益保護(hù)服務(wù)合同
- 股權(quán)激勵(lì)與員工持股計(jì)劃實(shí)施協(xié)議
- 碳中和戰(zhàn)略規(guī)劃與實(shí)施指導(dǎo)協(xié)議
- 政府基礎(chǔ)設(shè)施建設(shè)項(xiàng)目材料供應(yīng)合同
- 視頻號(hào)網(wǎng)紅電商合作運(yùn)營協(xié)議
- 犯罪所得財(cái)產(chǎn)分割與追繳流程協(xié)議
- 影視作品改編權(quán)及衍生品生產(chǎn)市場推廣合同
- 親子早教中心兒童美術(shù)教育項(xiàng)目合作協(xié)議
- 2025租房合同范本:租賃協(xié)議模板
- 法律文化-形考作業(yè)1-國開(ZJ)-參考資料
- 醫(yī)院感染管理筆試題及答案
- 10.1 認(rèn)識(shí)民法典 課件-2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)下冊
- 中華人民共和國傳染病防治法
- 海南旅游演藝融合發(fā)展問題探討
- 初級(jí)注冊安全工程師課件
- 房地產(chǎn)公司2025年度項(xiàng)目開發(fā)計(jì)劃
- 物業(yè)保盤計(jì)劃制作與實(shí)施指導(dǎo)
- 2025年北京市海淀區(qū)九年級(jí)初三一模英語試卷(含答案)
評(píng)論
0/150
提交評(píng)論