模擬濾波器的設(shè)計.ppt_第1頁
模擬濾波器的設(shè)計.ppt_第2頁
模擬濾波器的設(shè)計.ppt_第3頁
模擬濾波器的設(shè)計.ppt_第4頁
模擬濾波器的設(shè)計.ppt_第5頁
已閱讀5頁,還剩46頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

6 2模擬濾波器的設(shè)計 模擬濾波器的理論和設(shè)計方法已發(fā)展得相當(dāng)成熟 且有若干典型的模擬濾波器供我們選擇 這些濾波器都有嚴(yán)格的設(shè)計公式 現(xiàn)成的曲線和圖表供設(shè)計人員使用 典型的模擬濾波器 巴特沃斯Butterworth濾波器幅頻特性單調(diào)下降 切比雪夫Chebyshev濾波器幅頻特性在通帶或者在阻帶有波動 橢圓Ellipse濾波器 貝塞爾Bessel濾波器通帶內(nèi)有較好的線性相位持性 為什么要借助于模擬濾波器設(shè)計數(shù)字濾波器 以這些數(shù)學(xué)函數(shù)命名的濾波器是低通濾波器的原型 模擬濾波器按幅度特性可分成低通 高通 帶通和帶阻濾波器 它們的理想幅度特性如圖所示 通常只觀察正頻部分 設(shè)計濾波器時 總是先設(shè)計低通濾波器 再通過頻率變換將低通濾波器轉(zhuǎn)換成希望類型的濾波器 下面我們先介紹低通濾波器的技術(shù)指標(biāo)和逼近方法 然后分別介紹巴特沃斯濾波器和切比雪夫濾波器的設(shè)計方法 1 模擬低通濾波器的設(shè)計指標(biāo)及逼近方法 模擬低通濾波器的設(shè)計指標(biāo)構(gòu)造一個逼近設(shè)計指標(biāo)的傳輸函數(shù)Ha s Butterworth 巴特沃斯 低通逼近Chebyshev 切比雪夫 低通逼近 模擬低通濾波器的設(shè)計指標(biāo)有 p p s和 s p 通帶截止頻率 s 阻帶截止頻率 p 通帶中最大衰減系數(shù) s 阻帶最小衰減系數(shù) p和 s一般用dB數(shù)表示 對于單調(diào)下降的幅度特性 可表示成 1 模擬低通濾波器的設(shè)計指標(biāo)及逼近方法 續(xù) 如果 0處幅度已歸一化到1 即 Ha j0 1 p和 s表示為以上技術(shù)指標(biāo)用圖所示 圖中 c稱為3dB截止頻率 因 濾波器的技術(shù)指標(biāo)給定后 需要構(gòu)造一個傳輸函數(shù)Ha s 希望其幅度平方函數(shù)滿足給定的指標(biāo) p和 s 一般濾波器的單位沖激響應(yīng)為實數(shù) 因此 逼近方法 用頻率響應(yīng)的幅度平方函數(shù)逼近 幅度平方函數(shù)在模擬濾波器的設(shè)計中起很重要的作用 對于上面介紹的典型濾波器 其幅度平方函數(shù)都有自己的表達(dá)式 可以直接引用 1 由幅度平方函數(shù)確定模擬濾波器的系統(tǒng)函數(shù) h t 是實函數(shù) 將左半平面的的極點歸 將以虛軸為對稱軸的對稱零點的任一半作為的零點 虛軸上的零點一半歸 由幅度平方函數(shù)得象限對稱的s平面函數(shù) 將因式分解 得到各零極點 對比和 確定增益常數(shù) 由零極點及增益常數(shù) 得 2 Butterworth低通的設(shè)計方法 幅度平方函數(shù)1 幅度函數(shù)特點2 幅度平方函數(shù)的極點分布3 濾波器的系統(tǒng)函數(shù)4 濾波器的設(shè)計步驟 1 幅度平方函數(shù) 當(dāng) 稱為Butterworth低通濾波器的3分貝帶寬 N為濾波器的階數(shù) 為通帶截止頻率 2 幅度函數(shù)特點 3dB不變性 通帶內(nèi)有最大平坦的幅度特性 單調(diào)減小 過渡帶及阻帶內(nèi)快速單調(diào)減小 Butterworth低通濾波器的幅度函數(shù)只由階數(shù)N控制 Butterworth濾波器是一個全極點濾波器 其極點 2 幅度平方函數(shù)的極點分布 2N個極點等間隔分布在半徑為的圓上 該圓稱為巴特沃斯圓 間隔是 Nrad 極點在s平面呈象限對稱 分布在Buttterworth圓上 共2N點 極點間的角度間隔為 極點不落在虛軸上 N為奇數(shù) 實軸上有極點 N為偶數(shù) 實軸上無極點 一半極點在左半平面 一半極點在右半平面 為形成穩(wěn)定的濾波器 2N個極點中只取s平面左半平面的N個極點構(gòu)成Ha s 而右半平面的N個極點構(gòu)成Ha s Ha s 的表示式為 設(shè)N 3 極點有6個 它們分別為 由于各濾波器的幅頻特性不同 為使設(shè)計統(tǒng)一 將所有的頻率歸一化 這里采用對3dB截止頻率 c歸一化 歸一化后的Ha s 表示為式中 s c j c 令 c 稱為歸一化頻率 令p j p稱為歸一化復(fù)變量 這樣歸一化巴特沃斯的傳輸函數(shù)為 3 歸一化系統(tǒng)函數(shù) pk為歸一化極點 用下式表示 將極點展開可得到的Ha p 的分母p的N階多項式 用下式表示 上式為Buttterworth低通濾波器的歸一化系統(tǒng)函數(shù) 分母多項式的系數(shù)有表可查 4 階數(shù)N與技術(shù)指標(biāo)的關(guān)系 根據(jù)技術(shù)指標(biāo)求出濾波器階數(shù)N 確定技術(shù)指標(biāo) 由 得 同理 令 則 技術(shù)指標(biāo)轉(zhuǎn)化為階數(shù) 取大于等于N的最小整數(shù) 關(guān)于3dB截止頻率 c 如果技術(shù)指標(biāo)中沒有給出 可由下式求出 因為反歸一時要用此參數(shù) 5 低通巴特沃斯濾波器的設(shè)計步驟 1 根據(jù)技術(shù)指標(biāo) p p s和 s 求出濾波器的階數(shù)N 2 求出歸一化極點pk 由pk構(gòu)造歸一化傳輸函數(shù)Ha p 3 將Ha p 反歸一化 阻帶指標(biāo)有富裕 通帶指標(biāo)有富裕 此環(huán)節(jié)可由查表得到 巴特沃斯歸一化低通濾波器的極點 巴特沃斯歸一化低通濾波器分母多項式系數(shù) 注意 巴特沃斯歸一化低通濾波器分母多項式的因式分解 例6 2 1已知通帶截止頻率fp 5kHz 通帶最大衰減 p 2dB 阻帶截止頻率fs 12kHz 阻帶最小衰減 s 30dB 按照以上技術(shù)指標(biāo)設(shè)計巴特沃斯低通濾波器 解 1 確定階數(shù)N 2 由其極點為 傳輸函數(shù) 或由N 5 直接查表得到 極點 0 3090 j0 9511 8090 j0 5878 1 0000系數(shù) b0 1 0000 b1 3 2361 b2 5 2361 b3 5 2361 b4 3 2361 先求3dB截止頻率 c 將 c代入 6 2 18 式 得到 將p s c代入Ha p 中得到 3 為將Ha p 去歸一化 此時算出的截至頻率比題目中給出的小 或者說在截至頻率處的衰減大于30dB 所以說阻帶指標(biāo)有富裕量 3 Chebyshev低通濾波器的設(shè)計方法 提出的背景巴特沃斯濾波器的頻率特性曲線 無論在通帶和阻帶都是頻率的單調(diào)函數(shù) 因此 當(dāng)通帶邊界處滿足指標(biāo)要求時 通帶內(nèi)肯定會有余量 因此 更有效的設(shè)計方法應(yīng)該是將精確度均勻地分布在整個通帶內(nèi) 或者均勻分布在整個阻帶內(nèi) 或者同時分布在兩者之內(nèi) 這樣 就可用階數(shù)較低的系統(tǒng)滿足要求 這可通過選擇具有等波紋特性的逼近函數(shù)來達(dá)到 1 Chebyshev低通濾波器的幅度平方函數(shù) Chebyshev 型濾波器的幅度平方函數(shù) N 濾波器的階數(shù) Chebyshev 型濾波器幅度平方函數(shù) 截止頻率 不一定為3dB帶寬 表示通帶波紋大小 越大 波紋越大 N階Chebyshev多項式 當(dāng)N 0時 C0 x 1 當(dāng)N 1時 C1 x x 當(dāng)N 2時 C2 x 2x2 1 當(dāng)N 3時 C3 x 4x3 3x 由此可歸納出高階切比雪夫多項式的遞推公式為CN 1 x 2xCN x CN 1 x 前兩項給出后才能迭代下一個 N 0 4 5切比雪夫多項式曲線 1 幅度函數(shù)特點 通帶外 迅速單調(diào)下降趨向0 N為偶數(shù) N為奇數(shù) 通帶內(nèi) 在1和間等波紋起伏 切比雪夫 型與巴特沃斯低通的幅度函數(shù)平方曲線 2 Chebyshev濾波器的三個參量 通帶截止頻率 給定 表征通帶內(nèi)波紋大小 由通帶衰減決定 設(shè)阻帶的起始點頻率 阻帶截止頻率 用 s表示 在 s處的A2 s 為 令 s s p 由 s 1 有 可以解出 濾波器階數(shù)N的確定 阻帶衰減越大所需階數(shù)越高 3dB截止頻率 c的確定 按照 6 2 19 式 有 通常取 c 1 因此 上式中僅取正號 得到3dB截止頻率計算公式 令 3 幅度平方特性的極點分布 以上 p 和N確定后 可以求出濾波器的極點 并確定Ha p p s p 有用的結(jié)果 設(shè)Ha s 的極點為si i j i 可以證明 上式是一個橢圓方程 因為ch x 大于sh x 長半軸為 pch 在虛軸上 短半軸為 psh 在實軸上 令b p和a p分別表示長半軸和短半軸 可推導(dǎo)出 6 2 29 6 2 30 6 2 31 因此切比雪夫濾波器的極點就是一組分布在長半軸為b p 短半軸為a p的橢圓上的點 設(shè)N 3 平方幅度函數(shù)的極點分布如圖6 2 8所示 極點用X表示 為穩(wěn)定 用左半平面的極點構(gòu)成Ha p 即 6 2 32 式中c是待定系數(shù) 根據(jù)幅度平方函數(shù) 6 2 19 式可導(dǎo)出 c 2N 1 代入 6 2 32 式 得到歸一化的傳輸函數(shù)為 6 2 33a 圖6 2 8三階切比雪夫濾波器的極點分布 按照以上分析 下面介紹切比雪夫 型濾波器設(shè)計步驟 1 確定技術(shù)要求 p p s和 s p是 p時的衰減系數(shù) s是 s時的衰減系數(shù) 它們?yōu)?去歸一化后的傳輸函數(shù)為 6 2 33b 6 2 34 6 2 35 5 濾波器的設(shè)計步驟 歸一化 1 確定技術(shù)指標(biāo) 2 根據(jù)技術(shù)指標(biāo)求出濾波器階數(shù)N及 其中 3 求出歸一化系統(tǒng)函數(shù) 或者由N和 直接查表得 其中極點由下式求出 4 去歸一化 例6 2 2設(shè)計低通切比雪夫濾波器 要求通帶截止頻率fp 3kHz 通帶最大衰減 p 0 1dB 阻帶截止頻率fs 12kHz 阻帶最小衰減 s 60dB 解 1 濾波器的技術(shù)指標(biāo) 2 求階數(shù)N和 此過程可直接查表 3 求歸一化系統(tǒng)函數(shù)Ha

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論