函數(shù)符號讀法.doc_第1頁
函數(shù)符號讀法.doc_第2頁
函數(shù)符號讀法.doc_第3頁
函數(shù)符號讀法.doc_第4頁
函數(shù)符號讀法.doc_第5頁
全文預(yù)覽已結(jié)束

VIP免費下載

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

數(shù)學(xué)符號讀法大全大寫 小寫 英文注音 國際音標(biāo)注音 中文注音 alpha alfa 阿耳法 beta beta 貝塔 gamma gamma 伽馬 deta delta 德耳塔 epsilon epsilon 艾普西隆 zeta zeta 截塔 eta eta 艾塔 theta ita 西塔 iota iota 約塔 kappa kappa 卡帕 lambda lambda 蘭姆達(dá) mu miu 繆 nu niu 紐 xi ksi 可塞 omicron omikron 奧密可戎 pi pai 派 rho rou 柔 sigma sigma 西格馬 tau tau 套 upsilon jupsilon 衣普西隆 phi fai 斐 chi khai 喜 psi psai 普西 omega omiga 歐米伽符號表 符號 含義 i -1的平方根 f(x) 函數(shù)f在自變量x處的值 sin(x) 在自變量x處的正弦函數(shù)值 exp(x) 在自變量x處的指數(shù)函數(shù)值,常被寫作ex ax a的x次方;有理數(shù)x由反函數(shù)定義 ln x exp x 的反函數(shù) ax 同 ax logba 以b為底a的對數(shù); blogba = a cos x 在自變量x處余弦函數(shù)的值 tan x 其值等于 sin x/cos x cot x 余切函數(shù)的值或 cos x/sin x sec x 正割含數(shù)的值,其值等于 1/cos x csc x 余割函數(shù)的值,其值等于 1/sin x asin x y,正弦函數(shù)反函數(shù)在x處的值,即 x = sin y acos x y,余弦函數(shù)反函數(shù)在x處的值,即 x = cos y atan x y,正切函數(shù)反函數(shù)在x處的值,即 x = tan y acot x y,余切函數(shù)反函數(shù)在x處的值,即 x = cot y asec x y,正割函數(shù)反函數(shù)在x處的值,即 x = sec y acsc x y,余割函數(shù)反函數(shù)在x處的值,即 x = csc y 角度的一個標(biāo)準(zhǔn)符號,不注明均指弧度,尤其用于表示atan x/y,當(dāng)x、y、z用于表示空間中的點時 i, j, k 分別表示x、y、z方向上的單位向量 (a, b, c) 以a、b、c為元素的向量 (a, b) 以a、b為元素的向量 (a, b) a、b向量的點積 a?b a、b向量的點積 (a?b) a、b向量的點積 |v| 向量v的模 |x| 數(shù)x的絕對值 表示求和,通常是某項指數(shù)。下邊界值寫在其下部,上邊界值寫在其上部。如j從1到100的和可以表示成:。這表示 1 + 2 + + n M 表示一個矩陣或數(shù)列或其它 |v 列向量,即元素被寫成列或可被看成k1階矩陣的向量 v| 被寫成行或可被看成從1k階矩陣的向量 dx 變量x的一個無窮小變化,dy, dz, dr等類似 ds 長度的微小變化 變量 (x2 + y2 + z2)1/2 或球面坐標(biāo)系中到原點的距離 r 變量 (x2 + y2)1/2 或三維空間或極坐標(biāo)中到z軸的距離 |M| 矩陣M的行列式,其值是矩陣的行和列決定的平行區(qū)域的面積或體積 |M| 矩陣M的行列式的值,為一個面積、體積或超體積 det M M的行列式 M-1 矩陣M的逆矩陣 vw 向量v和w的向量積或叉積 vw 向量v和w之間的夾角 A?BC 標(biāo)量三重積,以A、B、C為列的矩陣的行列式 uw 在向量w方向上的單位向量,即 w/|w| df 函數(shù)f的微小變化,足夠小以至適合于所有相關(guān)函數(shù)的線性近似 df/dx f關(guān)于x的導(dǎo)數(shù),同時也是f的線性近似斜率 f 函數(shù)f關(guān)于相應(yīng)自變量的導(dǎo)數(shù),自變量通常為x ?f/?x y、z固定時f關(guān)于x的偏導(dǎo)數(shù)。通常f關(guān)于某變量q的偏導(dǎo)數(shù)為當(dāng)其它幾個變量固定時df與dq的比值。任何可能導(dǎo)致變量混淆的地方都應(yīng)明確地表述 (?f/?x)|r,z 保持r和z不變時,f關(guān)于x的偏導(dǎo)數(shù) grad f 元素分別為f關(guān)于x、y、z偏導(dǎo)數(shù) (?f/?x), (?f/?y), (?f/?z) 或 (?f/?x)i + (?f/?y)j + (?f/?z)k; 的向量場,稱為f的梯度 ? 向量算子(?/?x)i + (?/?x)j + (?/?x)k, 讀作 del ?f f的梯度;它和 uw 的點積為f在w方向上的方向?qū)?shù) ?w 向量場w的散度,為向量算子? 同向量 w的點積, 或 (?wx /?x) + (?wy /?y) + (?wz /?z) curl w 向量算子 ? 同向量 w 的叉積 ?w w的旋度,其元素為(?fz /?y) - (?fy /?z), (?fx /?z) - (?fz /?x), (?fy /?x) - (?fx /?y) ? 拉普拉斯微分算子: (?2/?x2) + (?/?y2) + (?/?z2) f (x) f關(guān)于x的二階導(dǎo)數(shù),f (x)的導(dǎo)數(shù) d2f/dx2 f關(guān)于x的二階導(dǎo)數(shù) f(2)(x) 同樣也是f關(guān)于x的二階導(dǎo)數(shù) f(k)(x) f關(guān)于x的第k階導(dǎo)數(shù),f(k-1) (x)的導(dǎo)數(shù) T 曲線切線方向上的單位向量,如果曲線可以描述成 r(t), 則T = (dr/dt)/|dr/dt| ds 沿曲線方向距離的導(dǎo)數(shù) 曲線的曲率,單位切線向量相對曲線距離的導(dǎo)數(shù)的值:|dT/ds| N dT/ds投影方向單位向量,垂直于T B 平面T和N的單位法向量,即曲率的平面 曲線的扭率: |dB/ds| g 重力常數(shù) F 力學(xué)中力的標(biāo)準(zhǔn)符號 k 彈簧的彈簧常數(shù) pi 第i個物體的動量 H 物理系統(tǒng)的哈密爾敦函數(shù),即位置和動量表示的能量 Q, H Q, H的泊松括號 以一個關(guān)于x的函數(shù)的形式表達(dá)的f(x)的積分 函數(shù)f 從a到b的定積分。當(dāng)f是正的且 a b:a is greater than bab:a is much greater than bab: a is greater than or equal to b x:x approches infinityx2:x squarex3:x cubex:the square root of x3x:the cube root of x3:three pe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論