(魯京津瓊專用)2020版高考數(shù)學復習第三章導數(shù)及其應用階段自測卷(二)課件.pptx_第1頁
(魯京津瓊專用)2020版高考數(shù)學復習第三章導數(shù)及其應用階段自測卷(二)課件.pptx_第2頁
(魯京津瓊專用)2020版高考數(shù)學復習第三章導數(shù)及其應用階段自測卷(二)課件.pptx_第3頁
(魯京津瓊專用)2020版高考數(shù)學復習第三章導數(shù)及其應用階段自測卷(二)課件.pptx_第4頁
(魯京津瓊專用)2020版高考數(shù)學復習第三章導數(shù)及其應用階段自測卷(二)課件.pptx_第5頁
已閱讀5頁,還剩47頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

,第三章 導數(shù)及其應用,階段自測卷(二),一、選擇題(本大題共12小題,每小題5分,共60分) 1.(2019沈陽東北育才學校聯(lián)考)已知曲線yf(x)在x5處的切線方程是yx5,則f(5)與f(5)分別為 A.5,1 B.1,5 C.1,0 D.0,1,解析 由題意可得f(5)550,f(5)1, 故選D.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,2.已知函數(shù)f(x)xsin xax,且 1,則a等于 A.0 B.1 C.2 D.4,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,3.(2019淄博期中)若曲線ymxln x在點(1,m)處的切線垂直于y軸,則實數(shù)m等于 A.1 B.0 C.1 D.2,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 f(x)的導數(shù)為f(x)m 曲線yf(x)在點(1,m)處的切線斜率為km10,可得m1. 故選A.,4.已知f1(x)sin xcos x,fn1(x)是fn(x)的導函數(shù),即f2(x)f1(x),f3(x)f2(x),fn1(x)fn(x),nN*,則f2 020(x)等于 A.sin xcos x B.sin xcos x C.sin xcos x D.sin xcos x,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 f1(x)sin xcos x,f2(x)f1(x)cos xsin x, f3(x)f2(x)sin xcos x, f4(x)f3(x)cos xsin x,f5(x)f4(x)sin xcos xf1(x), fn(x)是以4為周期的函數(shù), f2 020(x)f4(x)sin xcos x,故選B.,5.(2019四川診斷)已知函數(shù)f(x)的導函數(shù)為f(x),且滿足f(x)2xf(e)ln x (其中e為自然對數(shù)的底數(shù)),則f(e)等于 A.1 B.1 C.e D.e1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 已知f(x)2xf(e)ln x,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 由題意知,函數(shù)的定義域為(0,),,7.(2019沈陽東北育才學校模擬)已知定義在(0,)上的函數(shù)f(x)x2m,g(x)6ln x4x,設兩曲線yf(x)與yg(x)在公共點處的切線相同,則m值等于 A.5 B.3 C.3 D.5,解得x1,這就是切點的橫坐標,代入g(x)求得切點的縱坐標為4, 將(1,4)代入f(x)得1m4,m5. 故選D.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 依題意得,f(x)aexcos x0,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,9.(2019河北衡水中學調(diào)研)如圖所示,某幾何體由底面半徑和高均為5的圓柱與半徑為5的半球面對接而成,該封閉幾何體內(nèi)部放入一個小圓柱體,且小圓柱體的上下底面均與外層圓柱的底面平行,則小圓柱體積的最大值為,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 小圓柱的高分為上下兩部分,上部分同大圓柱一樣為5,下部分深入底部半球內(nèi)設為h(0h5), 小圓柱的底面半徑設為r(0r5),由于r,h和球的半徑5滿足勾股定理, 即r2h252, 所以小圓柱體積Vr2(h5)(25h2)(h5)(0h5), 求導V(3h5)(h5),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,10.(2019涼山診斷)若對任意的0x1x2a都有x2ln x1x1ln x2x1x2成立,則a的最大值為,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,故函數(shù)在(0,1)上導數(shù)大于零,單調(diào)遞增,在(1,)上導數(shù)小于零,單調(diào)遞減. 由于x1x2且f(x1)f(x2),故x1,x2在區(qū)間(0,1)上,故a的最大值為1,故選B.,11.(2019洛陽、許昌質(zhì)檢)設函數(shù)yf(x),xR的導函數(shù)為f(x),且f(x)f(x), f(x)f(x),則下列不等式成立的是(注:e為自然對數(shù)的底數(shù)) A.f(0)e1f(1)e2f(2) B.e1f(1)f(0)e2f(2) C.e2f(2)e1f(1)f(0) D.e2f(2)f(0)e1f(1),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 設g(x)exf(x), g(x)exf(x)exf(x)ex(f(x)f(x), f(x)g(0)g(1), e1f(1) f(0)e2f(2),故選B.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,f(x)x2x2(x1)(x2), 所以函數(shù)f(x)在(2,1)上單調(diào)遞增,在(,2),(1,)上單調(diào)遞減, 又由關于x的方程f(x2)m有四個不同的實數(shù)解,等價于函數(shù)f(x)的圖象與直線ym在x(0,),上有兩個交點,,可得f(x)x2xa, 則f(0)ba,f(0)a2,則b2 ,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,二、填空題(本大題共4小題,每小題5分,共20分) 13.(2019陜西四校聯(lián)考)已知函數(shù)f(x)ln x2x24x,則函數(shù)f(x)的圖象在x1處的切線方程為_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,xy30,解析 f(x)ln x2x24x,,所求切線方程為y(2)x1,即xy30.,14.已知函數(shù)f(x)(xa)ln x(aR),若函數(shù)f(x)存在三個單調(diào)區(qū)間,則實數(shù)a的取值范圍是_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,函數(shù)f(x)(xa)ln x(aR),若函數(shù)f(x)存在三個單調(diào)區(qū)間,則f(x)有兩個變號零點, 即f(x)0有兩個不等實根,即ax(ln x1)有兩個不等實根,轉(zhuǎn)化為ya與yx(ln x1)的圖象有兩個不同的交點.令g(x)x(ln x1),,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,15.(2019山師大附中模擬)已知函數(shù)f(x)x32xex ,其中e是自然對數(shù)的 底數(shù),f(a1)f(2a2) 0,則實數(shù)a的取值范圍是_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,當且僅當x0時等號成立,可得f(x)在R上遞增,,可得f(x)為奇函數(shù),則f(a1)f(2a2)0 ,即有f(2a2)0f(a1)f(1a), 即有2a21a ,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,16.(2019湖北黃岡中學、華師附中等八校聯(lián)考)定義在R上的函數(shù)f(x)滿足f(x)f(x),且對任意的不相等的實數(shù)x1,x20,)有 0成立,若關于x的不等式f(2mxln x3) 2f(3)f(2mxln x3)在x1,3上恒成立,則 實數(shù)m的取值范圍是_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 函數(shù)f(x)滿足f(x)f(x), 函數(shù)f(x)為偶函數(shù). 又f(2mxln x3)2f(3)f(2mxln x3) 2f(3)f(2mxln x3), f(2mxln x3)f(3). 由題意可得函數(shù)f(x)在(,0)上單調(diào)遞增,在0,)上單調(diào)遞減. |2mxln x3|3對x1,3恒成立, 32mxln x33對x1,3恒成立,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,g(x)在1,e上單調(diào)遞增,在(e,3上單調(diào)遞減,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,h(x)在1,3上單調(diào)遞減,,三、解答題(本大題共70分) 17.(10分)(2019遼寧重點高中聯(lián)考)已知函數(shù)f(x)x3mx2m2x1(m為常數(shù),且m0)有極大值9. (1)求m的值;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解 f(x)3x22mxm2(xm)(3xm)0,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,當x變化時,f(x)與f(x)的變化情況如下表:,從而可知,當xm時,函數(shù)f(x)取得極大值9, 即f(m)m3m3m319,m2.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,(2)若斜率為5的直線是曲線yf(x)的切線,求此直線方程.,解 由(1)知,f(x)x32x24x1, 依題意知f(x)3x24x45,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,即5xy10或135x27y230.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,18.(12分)(2019成都七中診斷)已知函數(shù)f(x)xsin x2cos xax2,其中a為常數(shù). (1)若曲線yf(x)在x 處的切線斜率為2,求該切線的方程;,解 求導得f(x)xcos xsin xa,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,(2)求函數(shù)f(x)在x0,上的最小值.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解 對任意x0,f(x)xsin x0, 所以f(x)在0,內(nèi)單調(diào)遞減. 當a0時,f(x)f(0)a0, f(x)在區(qū)間0,上單調(diào)遞減,故f(x)minf()a. 當a時,f(x)f()a0, f(x)在區(qū)間0,上單調(diào)遞增,故f(x)minf(0)4. 當00,f()a0,且f(x)在區(qū)間0,上單調(diào)遞減,結合零點存在定理可知,存在唯一x0(0,),使得f(x0)0, 且f(x)在0,x0上單調(diào)遞增,在x0,上單調(diào)遞減.故f(x)的最小值等于f(0)4和f()a中較小的一個值.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,19.(12分)(2019武漢示范高中聯(lián)考)已知函數(shù)f(x)4ln xmx21(mR). (1)若函數(shù)f(x)在點(1,f(1)處的切線與直線2xy10平行,求實數(shù)m的值;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解 f(x)4ln xmx21, f(x) 2mx, f(1)42m, 函數(shù)f(x)在(1,f(1)處的切線與直線2xy10平行,f(1)42m2, m1.,(2)若對于任意x1,e,f(x)0恒成立,求實數(shù)m的取值范圍.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解 對于任意x1,e,f(x)0恒成立, 4ln xmx210,在x1,e上恒成立,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,令g(x)0,得1x ,,令g(x)0,得 xe,,當x變化時,g(x),g(x)的變化如下表:,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20.(12分)已知函數(shù)f(x)ln xax(ax1),其中aR. (1)討論函數(shù)f(x)的單調(diào)性;,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,解 依題意知,函數(shù)f(x)的定義域為(0,),,21,22,當a0時,f(x)ln x,函數(shù)f(x)在(0,)上單調(diào)遞增;,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,(2)若函數(shù)f(x)在(0,1內(nèi)至少有1個零點,求實數(shù)a的取值范圍.,21,22,由于當x0時,f(x)且f(1)a2a0知,函數(shù)f(x)在(0,1內(nèi)無零點;,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,f(x)在(0,1內(nèi)無零點;,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,綜上可得a的取值范圍是1,0.,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21.(12分)(2019湖北黃岡中學、華師附中等八校聯(lián)考)在工業(yè)生產(chǎn)中,對一正三角形薄鋼板(厚度不計)進行裁剪可以得到一種梯形鋼板零件,現(xiàn)有一邊長為3(單位:米)的正三角形鋼板(如圖),沿平行于邊BC的直線DE將ADE剪去,得到所需的梯形鋼板BCED,記這個梯形鋼板的周長為x (單位:米),面積為S(單位:平方米). (1)求梯形BCED的面積S關于它的周長x的函數(shù)關系式;,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,解 DEBC,ABC是正三角形, ADE是正三角形,ADDEAE,BDCE3AD, 則DE2(3AD)39ADx,,21,22,故梯形BCED的面積S關于它的周長x的函數(shù)關系式為,(2)若在生產(chǎn)中,梯形BCED的面積與周長之比 達到最大值時,零件才能符合使用要求,試確定這個梯形的周長x為多少時,該零件才可以在生產(chǎn)中使用?,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,f(x),f(x)隨x的變化如下表:,20,1,2,3,4,5,6,7,8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論