已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第三章,中值定理,應(yīng)用,研究函數(shù)性質(zhì)及曲線性態(tài),利用導(dǎo)數(shù)解決實(shí)際問題,羅爾中值定理,拉格朗日中值定理,柯西中值定理,泰勒公式 (第三節(jié)),微分中值定理,與導(dǎo)數(shù)的應(yīng)用,一、羅爾( Rolle )定理,第一節(jié),二、拉格朗日( Lagrange )中值定理,三、柯西(Cauchy)中值定理,中值定理,第三章,費(fèi)馬(fermat)引理,一、羅爾( Rolle )定理,且,存在,證: 設(shè),則,證畢,羅爾( Rolle )定理,滿足:,(1) 在區(qū)間 a , b 上連續(xù),(2) 在區(qū)間 (a , b) 內(nèi)可導(dǎo),(3) f ( a ) = f ( b ),使,證:,故在 a , b 上取得最大值,M 和最小值 m .,若 M = m , 則,因此,若 M m , 則 M 和 m 中至少有一個(gè)與端點(diǎn)值不等,不妨設(shè),則至少存在一點(diǎn),使,注意:,定理?xiàng)l件不全具備, 結(jié)論不一定,成立.,則由費(fèi)馬引理得,例如,使,2) 定理?xiàng)l件只是充分的.,本定理可推廣為,在 ( a , b ) 內(nèi)可導(dǎo), 且,在( a , b ) 內(nèi)至少存在一點(diǎn),證明提示: 設(shè),證 F(x) 在 a , b 上滿足羅爾定理 .,例1. 證明方程,有且僅有一個(gè)小于1 的,正實(shí)根 .,證: 1) 存在性 .,則,在 0 , 1 連續(xù) ,且,由介值定理知存在,使,即方程有小于 1 的正根,2) 唯一性 .,假設(shè)另有,為端點(diǎn)的區(qū)間滿足羅爾定理?xiàng)l件 ,至少存在一點(diǎn),但,矛盾,故假設(shè)不真!,設(shè),例2. 設(shè)函數(shù),證明在 (0,1),內(nèi)至少存在一點(diǎn),使,分析,可得,證:設(shè),由題意知,由羅爾定理可知,在(0,1)內(nèi)至少存在一點(diǎn),使,即,二、拉格朗日中值定理,(1) 在區(qū)間 a , b 上連續(xù),滿足:,(2) 在區(qū)間 ( a , b ) 內(nèi)可導(dǎo),至少存在一點(diǎn),使,思路: 利用逆向思維找出一個(gè)滿足羅爾定理?xiàng)l件的函數(shù),作輔助函數(shù),顯然 ,在a, b 上連續(xù),在(a, b)內(nèi)可導(dǎo),且,證:,問題轉(zhuǎn)化為證,由羅爾定理知至少存在一點(diǎn),即定理結(jié)論成立 .,證畢,拉格朗日中值定理的有限增量形式:,推論: 若函數(shù),在區(qū)間 I 上滿足,則,在 I 上必為常數(shù).,證: 在 I 上任取兩點(diǎn),格朗日中值公式 , 得,由 的任意性知,在 I 上為常數(shù) .,令,則,例3. 證明等式,證: 設(shè),由推論可知,(常數(shù)),令 x = 0 , 得,又,故所證等式在定義域 上成立.,自證:,經(jīng)驗(yàn):,欲證,時(shí),只需證在 I 上,例4. 證明不等式,證: 設(shè),中值定理?xiàng)l件,即,因?yàn)?故,因此應(yīng)有,三、柯西(Cauchy)中值定理,分析:,及,(1) 在閉區(qū)間 a , b 上連續(xù),(2) 在開區(qū)間 ( a , b ) 內(nèi)可導(dǎo),(3)在開區(qū)間 ( a , b ) 內(nèi),至少存在一點(diǎn),使,滿足 :,問題轉(zhuǎn)化為證,構(gòu)造輔助函數(shù),證: 作輔助函數(shù),且,使,即,由羅爾定理知, 至少存在一點(diǎn),思考: 柯西定理的下述證法對嗎 ?,兩個(gè) 不 一定相同,錯(cuò)!,上面兩式相比即得結(jié)論.,柯西定理的幾何意義:,注意:,弦的斜率,切線斜率,例5. 設(shè),至少存在一點(diǎn),使,證: 問題轉(zhuǎn)化為證,設(shè),則,在 0, 1 上滿足柯西中值,定理?xiàng)l件,因此在 ( 0 , 1 ) 內(nèi)至少存在一點(diǎn) ,使,即,證明,內(nèi)容小結(jié),1. 微分中值定理的條件、結(jié)論及關(guān)系,羅爾定理,拉格朗日中值定理,柯西中值定理,2. 微分中值定理的應(yīng)用,(1) 證明恒等式,(2) 證明不等式,(3) 證明有關(guān)中值問題的結(jié)論,關(guān)鍵: 利用逆向思維 設(shè)輔助函數(shù),費(fèi)馬引理,思考與練習(xí),1. 填空題,1) 函數(shù),在區(qū)間 1, 2 上滿足拉格朗日定理,條件, 則中值,2) 設(shè),有,個(gè)根 , 它們分別在區(qū)間,上.,方程,2. 設(shè),且在,內(nèi)可導(dǎo), 證明至少存,在一點(diǎn),使,提示:,由結(jié)論可知, 只需證,即,驗(yàn)證,在,上滿足羅爾定理?xiàng)l件.,設(shè),3. 若,可導(dǎo), 試證在其兩個(gè)零點(diǎn)間一定有,的零點(diǎn).,提示: 設(shè),欲證:,使,只要證,亦即,作輔助函數(shù),驗(yàn)證,在,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度美團(tuán)商家入駐及品牌合作合同4篇
- 2025年度環(huán)保建材供應(yīng)與施工勞務(wù)分包合同范本4篇
- 2025年電商買手用戶互動體驗(yàn)設(shè)計(jì)與優(yōu)化合同3篇
- 2025年度櫥柜品牌形象設(shè)計(jì)合同2篇
- 2025年度全鋁門窗定制安裝服務(wù)合同3篇
- 中源云計(jì)算架構(gòu)-深度研究
- 2025年度打樁勞務(wù)分包合同合同解除與終止條件規(guī)范4篇
- 2025年度個(gè)人室內(nèi)外裝修設(shè)計(jì)合同范本4篇
- 二零二五版環(huán)保型泥漿外運(yùn)與廢棄物處理設(shè)施建設(shè)合同4篇
- 2025年度智能家居系統(tǒng)安裝承建合同標(biāo)的智能化升級4篇
- 第1課 隋朝統(tǒng)一與滅亡 課件(26張)2024-2025學(xué)年部編版七年級歷史下冊
- 2025-2030年中國糖醇市場運(yùn)行狀況及投資前景趨勢分析報(bào)告
- 冬日暖陽健康守護(hù)
- 水處理藥劑采購項(xiàng)目技術(shù)方案(技術(shù)方案)
- 2024級高一上期期中測試數(shù)學(xué)試題含答案
- 盾構(gòu)標(biāo)準(zhǔn)化施工手冊
- 山東省2024-2025學(xué)年高三上學(xué)期新高考聯(lián)合質(zhì)量測評10月聯(lián)考英語試題
- 不間斷電源UPS知識培訓(xùn)
- 三年級除法豎式300道題及答案
- 人教版八級物理下冊知識點(diǎn)結(jié)
- 2024年江蘇省徐州市中考一模數(shù)學(xué)試題(含答案)
評論
0/150
提交評論