
Further Analysis

Prof. W.T. Gowers

Lent 1997

These notes are maintained by Paul Metcalfe.
Comments and corrections to soc-archim-notes@lists.cam.ac.uk.



Revision: 2.8
Date: 1999/10/22 11:33:59

The following people have maintained these notes.

– date Paul Metcalfe



Contents

Introduction v

1 Topological Spaces 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Building New Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Compactness 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Some compact sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Consequences of compactness . . . . . . . . . . . . . . . . . . . . . 7
2.4 Other forms of compactness . . . . . . . . . . . . . . . . . . . . . . 7

3 Connectedness 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Connectedness in R . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Path connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Preliminaries to complex analysis 13
4.1 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Cauchy’s theorem and its consequences 19
5.1 Cauchy’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Consequences of Cauchy’s Theorem . . . . . . . . . . . . . . . . . . 23

6 Power Series 27
6.1 Analyticity and Holomorphy . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Classification of Isolated Singularities . . . . . . . . . . . . . . . . . 31

7 Winding Numbers 35
7.1 Introduction and Definition . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Cauchy’s Theorem (homology version) 41

iii



iv CONTENTS



Introduction

These notes are based on the course “Further Analysis” given by Prof. W.T. Gowers1

in Cambridge in the Lent Term 1997. These typeset notes are totally unconnected with
Prof. Gowers.

Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s
Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2
Waves (etc.) Statistical Physics
General Relativity Dynamical Systems
Physiological Fluid Dynamics Bifurcations in Nonlinear Convection
Slow Viscous Flows Turbulence and Self-Similarity
Acoustics Non-Newtonian Fluids
Seismic Waves

They may be downloaded from

http://www.istari.ucam.org/maths/ or
http://www.cam.ac.uk/CambUniv/Societies/archim/notes.htm

or you can email soc-archim-notes@lists.cam.ac.uk to get a copy of the
sets you require.

1Yes, that Prof. Gowers.
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Chapter 1

Topological Spaces

1.1 Introduction

Definition 1.1. A topological space is a set X together with a collection � of subsets
of X satisfying the following axioms.

1. �� X � � ;

2. If U�� � � � � Un � � , then U� � � � � � Un � � ; (that is, � is closed under finite
intersections)

3. Any union of sets in � is in � (or � is closed under any unions).

Definition 1.2. � is called a topology on X . The sets in � are called open sets. A
subset of X is closed if its complement is open.

Examples. 1. If �X� d� is a metric space and � the collection of open sets (in a
metric space sense) then �X� �� is a topological space.

2. If X is any set and � is the power set of X , �X� �� is a topological space. � is
called the discrete topology on X .

3. If X is any set and � � f�� Xg, �X� �� is a topological space. � is called the
indiscrete topology on X .

4. If X is any infinite set, and � � fY � X � X n Y is finiteg � f�g then �X� �� is
a topological space. � is called the cofinite topology on X .

5. If X is any uncountable set, and � � fY � X � X nY is countableg� f�g then
�X� �� is a topological space. � is called the cocountable topology on X .

Definition 1.3. Let A be a subset of a topological space. The closure of A, denoted A,
is the intersection of all closed sets containingA. Note that A is closed and any closed
set containing A contains A.

Definition 1.4. Let A be a subset of a topological space. The interior of A, denoted
intA or A� is the union of all open sets in A. Note that intA is open and any open set
in A is in intA.

Definition 1.5. The boundary �A of a set A is A n intA.

1



2 CHAPTER 1. TOPOLOGICAL SPACES

Definition 1.6. Let �xn��� be a sequence in a topological space �X� ��. We say that
xn converges to x (xn � x) if for every open set U such that x � U , � N such that
n 	 N 
 xn � U . This agrees with the usual definition for metric spaces.

Definition 1.7. Let �X� �� and �Y� �� be topological spaces and let f � X �� Y . We
say that f is continuous if for every U � �, f���U� � � . (Or inverse image of an open
set is open.)

It follows from results in Analysis that this definition agrees with the usual � � �
definition if X and Y are metric spaces.

Definition 1.8. Let �X� �� be a topological space and let x � X . A neighbourhood of
x is a set N that contains an open set containing x.

Proposition 1.9. Let �X� �� and �Y� �� be topological spaces and let f � X �� Y .
Then the following are equivalent :-

1. f is continuous.

2. For every x � X and every neighbourhoodM of f�x� there exists a neighbour-
hood N of x such that f�N� �M .

Proof. Firstly do � 
 �. M contains an open set U containing f�x�. Then N �
f���U� is a neighbourhood of x such that f�N� � U .

Now do the case �
 �. LetU be an open subset of Y . For every x � f���U�, U is
a neighbourhood of f�x�. We can find a neighbourhoodNx of x such that f�Nx� � U .
Now Nx contains an open set Vx containing x. Let

V �
�

x�f���U�

Vx�

Then f�Vx� � U x, so f�V � � U and V � f���U�. But V � f���U� so V �
f���U�. V is open, so f���U� is open and f is continuous.

Definition 1.10. Let �X� �� and �Y� �� be topological spaces and f � X �� Y . f is a
homeomorphism if it is continuous with a continuous inverse.

Example. R and ��� �� with usual metrics are homeomorphic.

1.2 Building New Spaces

Definition 1.11. Let �X� �� be a topological space and Y � X . The subspace topol-
ogy on Y is

fU � Y � U � �g�

Proposition 1.12. Let �X� d� be a metric space, Y � X and U � Y . Then the
following are equivalent.

1. U is open in the subspace topology on Y .

2. For every u � U� � � 	 � such that if v � Y� d�u� v� 
 � then v � U .
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Proof. Do � 
 �. Let u � U . Since U open in Y , � V � X , V open such that
U � V � Y . Then � � 	 � such that d�u� v� 
 � 
 v � V . Now d�u� v� 
 � and
v � Y 
 v � V � Y � U .

Now do � 
 �. Suppose U satisfies 2. For every u � U , pick � � ��u� 	 � such
that d�u� v� 
 � and v � Y 
 v � U . Let Nu � fv � X � d�u� v� 
 �g. Now Nu is
open and V �

S
u�U Nu is open. Now V � Y � U .

Definition 1.13. Let �X� �� be a topological space and � be an equivalence relation
on X . Denote the set X�� by Y and let q � X �� Y be the equivalence map. (ie if
x � X , q�x� is the equivalence class of x). The quotient topology on Y is fU � Y �
q���U� � �g.

N.B. 1. q���U� is the union of the equivalence classes in U.

2. Notice q is continuous and that the quotient topology is the largest topology
making it so.

Examples. 1. Let � be the usual topology on R. Then the subspace topology on
Z� R coincides with the discrete topology on Z.

2. Let � be as in 1. Then the interval � �� � �� is open in the subspace topology on
	�� ��.

3. Let � be the equivalence relation on R defined by x � y � x � y � Z. Let 	x�
denote the equivalence class of x. Then the map

� � R�� �� T � fz � C � jzj � �g

is both well defined and a homeomorphism.

Definition 1.14. Let �X� �� and �Y� �� be topological spaces. The product topology
on X � Y is the collection of all possible unions of sets of the form U � V with U � �
and V � �. Similarly, if �Xi� �i�

n
i�� are n topological spaces, the product topology onQn

i��Xi is the collection of all unions of sets
Qn

i�� Ui with Ui � �i.

Example. If R has its usual topology, then the product topology on R �R is the same
as the usual topology on R � R � R� .

Proof. Let us write  for the product topology on R � R and � for the usual (Eu-
clidean) topology. Let U � �. Then given �x�� x�� � U , � � 	 � such that
d��x�� x��� �y�� y��� 
 � 
 �y�� y�� � U . Then the -open set �x � �

� � x 
 �
� � �

�x � �
� � x 
 �

� � � U and contains �x�� x��, so U is -open, given � � . Conversely,
every set of the form A�B with A�B open in R is open in R� . The union of such sets
is �-open, giving  � � and  � �.

Exercise to show that X � �Y � Z� � X � Y � Z as topological spaces.

Definition 1.15. Let �X� �� be a topological space. A basis for � (or a basis of open
sets) is a subset � � � such that every U � � is a union of sets in �. The sets in � are
called basic open sets. If x � X , then a basis of neighbourhoods of x is a collection
N of neighbourhoods of x such that every neighbourhood of x contains N � N .

Examples.

The sets U � V with U � � and V � � are a basis for the product topology on
�X� �� � �Y� ��.



4 CHAPTER 1. TOPOLOGICAL SPACES

The sets fy � d�x� y� � �
ng are a basis of neighbourhoods for a point x in a metric

space.

Proposition 1.16. The quotient topology and product topology are topologies.

Proof. The result for the quotient topology follows easily from the fact that q�� pre-
serves unions and intersections. For products let �Xi� �u�

n
i�� be topological spaces.

Everything is simple except closure under finite intersections. By induction it is suffi-
cient to prove for two sets.

If Ui � �i, call U� � � � � � Un an open box1. Firstly, observe that

�U� � � � � � Un� � �V� � � � � � Vn� � �U� � V��� � � � � �Un � Vn�

and thus the intersection of two open boxes is an open box. Now take�
���

B� and
�
���

C��

with all B�’s and C�’s open boxes.
Now �

���

B� �
�
���

C� �
�
���
���

B� � C� �

which is a union of open boxes, and so open.

1This is not standard terminology.



Chapter 2

Compactness

2.1 Introduction

Definition 2.1. Let �X� �� be a topological space. An open cover of X is a collection
fU� � � � �g of open sets such that X �

S
���U� . If Y � X then an open cover of

Y is a collection fU� � � � �g such that Y �
S
���U� .

A subcover of a cover U � fU� � � � �g is a subset V � U which is still an open
cover.

Examples. 1. fIn � ��n� n�� n � �� �� � � �g is an open cover for R. fIn�g is a
subcover.

2. The intervals In � �n� �� n
 �� with n � Z form a cover of the reals with no
proper subcover.

Definition 2.2. A topological space �X� �� is compact if every open cover has a finite
subcover.

Examples. The open covers mentioned above show that R is not compact. Any finite
topological space is compact, as is any set with the indiscrete topology.

2.2 Some compact sets

Lemma 2.3. Let �X� �� be a topological space with Y � X . Then the following are
equivalent :-

1. Y is compact in the subspace topology.

2. Every cover of Y by U� � � has a finite subcover.

Proof. � 
 �. Let Y �
S
���U� with U� � � . Then Y �

S
����U� � Y � with U�

open in Y . Since Y is compact � ��� � � � � �n such that Y �
Sn
i���U�i � Y �, which

gives that Y �
Sn
i�� U�i .

� 
 �. Let Y �
S
��� V� with V� open in Y . Since V� � U� � Y for some U�

open in X, Y �
S
��� U� . By assumption, � ��� � � � � �n such that Y �

Sn
i�� U�i . This

implies that Y �
Sn
i���U�i � Y � �

Sn
i�� V�i .

5



6 CHAPTER 2. COMPACTNESS

Theorem 2.4 (The Heine-Borel Theorem). The closed interval 	a� b� � R is com-
pact.

Proof. Let 	a� b� �
S
���U� with U� open in R and let

K � fx � 	a� b� � 	a� x� is contained in a finite union of open setsg�

Let r � supK. Then r � 	a� b�, so r � U� for some �. But U� is open, so � � 	 �
such that 	r � �� r 
 �� � U� . By the definition of r, 	a� r � �� has a finite open cover,
thus 	a� r 
 �� has a finite open cover. This is a contradiction, unless r � b.

Theorem 2.5. A continuous image of a compact set is compact.

Proof. Let X be compact and let f � X �� Y be continuous. Now f�X� �
S
���U�

with U� open in Y . Since f is continuous, f���U�� is open in X  � � � and
furthermore X �

S
��� f

���U��. Since X is compact, � ��� � � � � �n such that X �Sn
i�� f

���U�i�. Thus f�X� �
Sn
i�� U�i .

Theorem 2.6. A closed subset of a compact set is compact.

Proof. Let X be compact and K � X be closed. Let K �
S
���U� with U� open in

X . Now X � �X nK� �
�S

���U�

�
. Since X is compact, � a finite subcover and

X � �X nK� � �
Sn
i�� U�i�. Then K �

Sn
i�� U�i .

Definition 2.7. A topological space �X� �� is called Hausdorff, if given any two dis-
tinct x� y � X , there exist disjoint open sets U and V with x � U and y � V .

Examples. 1. Any metric space is Hausdorff. Given x� y distinct, let U � fz �
d�x� z� 
 d�x� y���g and V � fz � d�y� z� 
 d�x� y���g.

2. Any set with more than one element and the indiscrete topology is not Hausdorff.

Theorem 2.8. Every compact subset of a Hausdorff topological space is closed.

Proof. Let X be Hausdorff andK � X be compact. If x �� K and y � K then one can
find disjoint open sets Uxy and Vxy with x � Uxy and y � Vxy. For fixed x, the sets
Vxy� y � K form an open cover of K. Hence � y�� � � � � yn such that K �

Sn
i�� Vxyi

Let Ux �
Tn
i�� Uxyi and Vx �

Sn
i�� Vxyi . Note that Ux � Vx � �, x � Ux, K � Vx

and Ux �K � �. But
S
x��K Ux � X nK is open.

Theorem 2.9. A product of finitely many compact sets is compact.

Proof. It is enough to do two sets. The general result follows by induction (and X �
�Y � Z� � X � Y � Z).

Let X and Y be compact and let X � Y �
S
���U� , U� open in X � Y . U� is

the union of sets of the form V �W , with V open in X and W open in Y . It follows
that X � Y �

S
��� V� �W� with V� open in X and W� open in Y , V� �W� � U� .

Let x � X . Now

fxg � Y �
�
���
x�V�

V� �W� �

Since Y is compact, one can find ��� � � � � �n such that Y �
Sn
i��W�i . Let Vx �Tn

i�� V�i . The sets Vx form an open cover of X , thus � x�� � � � � xn such than X �
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Sm
j�� Vxj . NowX�Y �

Sm
j�� Vxj�Y . But Vxj�Y has a finite cover of �V��W��’s.

For each V� �W� , choose U� with V� �W� � U� to obtain a finite open cover of
X � Y .

Theorem 2.10. A subset of Rn is compact iff it is closed and bounded.

Proof. Let X � Rn be closed and bounded. Then �M such that d�x� �� � M x �
X . In particular, X � 	�M�M �n. But 	�M�M � is compact, so 	�M�M �n is com-
pact. But X is closed, so X is compact.

Conversely, if X is compact then X is closed, since Rn is Hausdorff. If X is not
bounded, then the sets Um � fx � X � d�x� �� 
 mg form an open cover with no
finite subcover.

2.3 Consequences of compactness

Theorem 2.11. A continuous real function on a compact metric space is bounded and
attains its bounds.

Proof. The image of such a function is compact, and so closed and bounded. Closed

 the function attains its bounds.

Theorem 2.12. Let X be a compact metric space, let Y be a metric space and let
f � X �� Y be continuous. Then f is uniformly continuous.

Proof. Let � 	 � be arbitrary. We must show � � 	 �  x� y � Xd�x� y� 
 � 

d�f�x�� f�y�� 
 �. Since f is continuous,  x � X � �x 	 �  y � Xd�x� y� 

��x 
 d�f�x�� f�y�� 
 ���.

Now let Ux � fy � d�x� y� 
 �xg. Then the Ux form an open cover of X , so
� x�� � � � � xn such that X �

Sn
i�� Uxi . Let � � min �xi .

Let d�y� z� 
 �. Since the Uxi form a cover we can find i such that d�xi� y� 
 �xi
and d�xi� z� 
 �xi . By the definition of the Uxi , d�f�y�� f�z�� 
 � by the triangle
inequality.

Lemma 2.13. Let X be a metric space and let K � X be compact and Y � X be
closed. Then � x � K such that d�x� Y � � inffd�x�w� � x � K�w � Y g.

Proof. Define f � K �� R by f�x� � dist�x� Y �. This is continuous, and so attains its
lower bound.

In particular, if K and Y are disjoint, then d�x� Y � 	 � for every x as Y is closed.
Hence � � 	 � such that d�x� Y � 	 �  x � X .

2.4 Other forms of compactness

Definition 2.14. X is sequentially compact if every sequence in X has a convergent
subsequence.

Bolzano-Weierstrass is the statement that a closed bounded subset of Rn is sequen-
tially compact.

Theorem 2.15. A compact metric space is sequentially compact.
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Proof. Let X be a metric space and let �xn��� be a sequence with no convergent sub-
sequence.

Now, claim that  x � X � � 	 � such that d�x� xn� 
 � for at most finitely
many n. Otherwise � x such that d�x� xn� 
 m�� infinitely many times. Now easy to
construct a convergent subsequence.

For each x, pick such a � and let Ux � fy � d�x� y� 
 �g. The Ux thus form an
open cover with no finite subcover.

Theorem 2.16. Let X � Rn . Then the following are equivalent.

1. X is compact.

2. X is sequentially compact.

3. X is closed and bounded.

Proof. We know � � � 
 � from previous theorems. Thus enough to show that
�
 �.

If X is not closed, � x �� X such that  m � ym � X such that d�ym� x� 
 n��.
Then every subsequence of yn converges in Rn to x and does not converge in X . If X
is not bounded then  n � xn such that d��� xn� 	 n, a sequence with no convergent
subsequence.



Chapter 3

Connectedness

3.1 Introduction

Definition 3.1. Let X be a topological space. Suppose U , V � X such that

1. U , V open,

2. U � V � �,

3. X � U � V ,

4. both U and V are non-empty.

Then U , V are said to disconnect X . X is connected if no two subsets disconnect X .

If Y is a subspace of a topological space X , then Y is disconnected in the subspace
topology iff � U� V open in X such that U � Y , V � Y �� � and Y � U � V and
Y � U � V � �. In this case we shall say that U , V disconnect Y .

Proposition 3.2. Let X be a topological space. Then the following are equivalent.

1. X is connected.

2. Every continuous f � X �� Z is constant.

3. The only subsets of X both open and closed are � and X .

Proof. � 
 �. Suppose � non-constant f � X �� Z. Then we can find m 
 n such
that both m and n are in f�X�. Then f���fk � k � mg� and f���fk � k 	 mg�
disconnect X .

�
 �. Suppose U and V disconnect X . Then consider

f�x� �

�
� x � U

� x � V�

�� �. Note that if U � X , U � �X n U� � X .

Proposition 3.3. A continuous image of a connected space is connected.

Proof. Let f � X �� Y be continuous with X a connected topological space. Then if
U and V disconnect f�X�, f���U� and f���V � disconnect X .

9



10 CHAPTER 3. CONNECTEDNESS

3.2 Connectedness in R

Definition 3.4. A subset I of the reals is an interval if, whenever x � y � z, x� z �
I 
 y � I .

Every interval is of one of these nine forms: 	a� b�, 	a� b�, 	a���, �a� b�, �a� b�,
�a���, ���� b�, ���� b�, ������.

To see this note that at the upper end of the interval there are three possibilities -
bounded and achieves bound, bounded and does not achieve bound and unbounded.
Similarly for the lower end of the interval.

Theorem 3.5. A subset of R is connected iff it is an interval.

Proof. If X � R is not an interval we can find x � y � z such that x� z � X and
y �� X . Then ���� y� and �y��� disconnect X .

Now let I � R be an interval and suppose U and V disconnect I . We can find
u � U � I and v � V � I and without loss of generality take u 
 v. Since I is an
interval, 	u� v� � I . Let s � supf	u� v� � Ug. If s � U then s 
 v. Since U is open
� � 	 � such that �s� �� s
 �� � U .

If s � V then �s� �� s
 �� � V 
 �s� �� s
 �� � U � �.

Corollary 3.6 (The Intermediate Value Theorem). Let a 
 b and f � 	a� b� �� R be
continuous. If f�a� 
 y 
 f�b� then � x � 	a� b� such that f�x� � y.

Proof. If not, f������� y�� and f����y���� disconnect 	a� b�.

3.3 Path connectedness

Definition 3.7. Let X be a topological space and let x� y � X . A (continuous) path
from x to y is a continuous function � � 	a� b� �� X such that ��a� � x and ��b� � y.

Definition 3.8. X is path connected if  x� y � X� � a path from x to y.

Proposition 3.9. Path-connectedness implies connectedness.

Proof. Suppose X is a topological space and U and V disconnect X . Let u � U and
v � V . If X is path connected then � continuous � � 	a� b� �� X with ��a� � u and
��b� � v. Then ����U� and ����V � disconnect 	a� b�.

Definition 3.10. Let X be a topological space and � � 	a� b� �� X and � � 	c� d� �� X
be continuous paths with ��b� � ��c�. Then the join of � and �, written � � � is
defined as � � � � 	a� b
 d� c� �� X

� � � � t ��

�
��t� a � t 
 b

��t
 c� b� b � t � b
 d� c

Definition 3.11. The reverse of �, written �� is the path �� � 	�b��a� �� X with
�� � t �� ���t�.

Let us write x� y if � a continuous path in X from x to y. This is an equivalence

relation. Writing x
�
�� y for “� is a path from x to y”, we have that :-

1. x
�
�� y 
 y

��
��� x
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2. x
�
�� y� y

�
�� z 
 x

���
���� z

3. the path � � 	�� �� �� X���t� � x satisfies x
�
�� x.

Thus � is an equivalence relation. The equivalence classes of � are called path-
components.

Definition 3.12. Let X � Rn . Then a polygonal path is a path � � 	a� b� �� X which
is piecewise linear, that is � a � x� 
 x� 
 � � � 
 xn � b such that ���� � t�xi�� 

txi� � �� � t���xi��� 
 t��xi� for t � 	�� �� and � � i � n. X is said to be
polygonally connected if any two points of X can be joined by polygonal paths.

Write x � y 1 for “� a polygonal path in X from x to y”. It is easy to see that�
is an equivalence relation.

Theorem 3.13. Let X � Rn be open. Then the following are equivalent :-

1. X is connected,

2. X is path-connected,

3. X is polygonally connected.

Proof. � 
 � is trivial and � 
 � has been done before. Thus it suffices to show that
�
 �.

Suppose X is connected and for x � X let U � fy � X � x � yg. It remains to
show that U is both open and closed in X , thus since X is connected, U � X .

Now, let y � U . Since X is open � � 	 � such that B��y� � X . Then for
z � B��y�, y � z, thus x� z by transitivity and U is open.

Let y � X n U . Since X is open, � � 	 � such that B��y� � X . As before,
z � B��y�
 y � z. If x� z then x� y. Thus X n U is open and U is closed.

N.B. The above argument also shows that if X � Rn is open then all path components
of X are open.

Lemma 3.14. Let n 	 � and X � R
n be a compact topological space. Then X c has

only open path-components and precisely one of these is unbounded.

Proof. Xc is an open subset of Rn , so its path components are open. X is bounded
so � M such that X � fy � kyk � Mg. It is easy to check that fy � kyk 	 Mg is
path-connected, so it is contained in an unbounded path-component of X c. The other
path-components lie in fy � kyk �Mg and are therefore bounded.

1Not 100% standard notation.
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Chapter 4

Preliminaries to complex
analysis

4.1 Paths

Definition 4.1. A path � � 	a� b� �� C is smooth if the function � is continuously differ-
entiable, with the appropriate one-sided limits at the endpoints a and b. In particular,
� and �� are bounded.

Two paths � � 	a� b� �� C and � � 	c� d� �� C are equivalent if � a continuously
differentiable function1 � � 	a� b� �� 	c� d� with ���t� 	 �  t � 	a� b�, ��a� � c,
��b� � d and ��t� � ����t��  t � 	a� b�. Note � � 	 � such that ���t� 	 �  t � 	a� b�.
This is easily shown to be an equivalence relation.

Definition 4.2. If � is a path, � � 	a� b� �� C , the track �� of � is defined by �� �
f��t� � C � a � t � bg.

N.B. Equivalent paths have the same track.

Definition 4.3. A path � � 	a� b� �� C is piecewise smooth if � a � x� 
 x� 
 � � � 

xn � b such that the restriction of � to 	xi��� xi�, �

��
	xi���xi


is smooth. Equivalently,

� is piecewise smooth if it can be written as the join of finitely many smooth paths.

Two piecewise smooth paths � � 	a� b� �� C and � � 	c� d� �� C are equivalent if we
can find a � x� 
 x� 
 � � � 
 xn � b and c � y� 
 y� 
 � � � 
 yn � d such that for
all � � i � n, �

��
	xi���xi


and �
��
	yi���yi


are equivalent.

Definition 4.4. A piecewise smooth path � � 	a� b� �� C is closed if ��a� � ��b�. It is
simple if ��x� � ��y�
 fx� yg � fa� bg or x � y.

4.2 Complex Integration

A function f � 	a� b� �� C is said to be Riemann integrable if both its real and imaginary
parts are Riemann integrable. The integral is defined to beZ b

a

f�t�dt �

Z b

a

��f�t��dt
 �

Z b

a

��f�t��dt�

1Including appropriate one-sided limits at the endpoints.

13
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Simple

Closed

Simple, Closed

Figure 4.1: Examples of paths

Lemma 4.5. Let f � 	a� b� �� C be continuous. Then�����
Z b

a

f�t�dt

����� �
Z b

a

jf�t�j dt�

Proof. For suitable � � R,�����
Z b

a

f�t�dt

����� � e	

Z b

a

f�t�dt �

Z b

a

e	
f�t�dt

� �

Z b

a

e	
f�t�dt �

Z b

a

��e	
f�t��dt

�

Z b

a

jf�t�j dt using the real result.

4.3 Domains

Definition 4.6. A domain is a connected open subset of C .

Examples. Some examples of domains are

1. C ,

2.  � fz � jzj 
 �g,

3. C n f�g,

4. fz � a 
 jzj 
 bg.

Definition 4.7. Given x� y � C , let 	x � y� be the path � � 	�� �� �� C , ��t� �
��� t�x
 ty.

Definition 4.8. A domain D is convex if x� y � D 
 	x� y�� � D.
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Convex Star-shaped, not convex Neither

Figure 4.2: Examples of domains

Definition 4.9. A domainD is star-shaped if � z� � D such that 	z� � z�� � D  z �
D.

A star-shaped domain is sometimes called a star-domain. Note that every (non-
empty) convex domain is star-shaped.

4.4 Path Integrals

Definition 4.10. Let D be a domain, f � D �� C be continuous and � � 	a� b� �� D be
a smooth path. Then the integral of f along � is defined as

Z
�

f�z�dz �

Z b

a

f���t�����t�dt�

If � is piecewise smooth, then pick a � x� 
 � � � 
 xn � b such that �
��
	xi���xi


is
smooth and then Z

�

f�z�dz �
nX
i��

Z xi

xi��

f���t�����t�dt�

Lemma 4.11. Equivalent paths give the same integral.

Proof. Let D be a domain and � � 	a� b� �� D and � � 	c� d� �� D be equivalent smooth
paths. Let f � D �� C be continuous and � � 	a� b� �� 	c� d� give the equivalence. Then

Z
�

f�z�dz �

Z d

c

f���s�����s�ds �

Z b

a

f�����t��������t�����t�dt

�

Z b

a

f���t�����t�dt �

Z
�

f�z�dz�

If � and � are piecewise smooth write � � �� � � � � � �n and � � �� � � � � � �n,
with �i and �i smooth, �i equivalent to �i. Then

Z
�

f�z�dz �
nX
i��

Z
�i

f�z�dz �
nX
i��

Z
�i

f�z�dz �

Z
�

f�z�dz�
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Example. Let D be C n f�g and f�z� � zn for some n � Z, � � 	�� �� �� D be
t �� e	t. Then

Z
�

f�z�dz �

�
�� if n � ��

� otherwise.

Proof.

Z
�

f�z�dz �

Z ��

�

en	t�e	tdt � �

Z ��

�

e�n���	tdt

�

��
�
h
e�n����t

n��

i��
�

� � if n �� ��

�� if n � ���

Definition 4.12. Let D be a domain and � � 	a� b� �� D be a smooth path. Then the
length of �, L��� is defined as

L��� �

Z b

a

j���t�j dt�

Lemma 4.13. Let D be a domain, f � D �� C be continuous and � � 	a� b� �� D be a
smooth path. Then ����

Z
�

f�z�dz

���� � sup
z���

jf�z�jL����

Proof.

����
Z
�

f�z�dz

���� �
�����
Z b

a

f���t�����t�dt

�����
�

Z b

a

jf���t��j j���t�j dt

� sup
z���

jf�z�jL��� by real result�

Remark. The above generalises easily to piecewise smooth paths.

Henceforth, all paths are piecewise smooth unless otherwise stated.

Proposition 4.14 (Fundamental Theorem of Calculus). Let D be a domain and let
f � D �� C be continuous. Suppose f has an antiderivative F (i.e. a function F �z�
such that F ��z� � f�z�  z � D). Let � � 	a� b� �� D be a path. ThenZ

�

f�z�dz � F ���b�� � F ���a���
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Proof. If � is smooth, thenZ
�

f�z�dz �

Z b

a

f���t�����t�dt �

Z b

a

�F � ����t�dt � F � ��b�� F � ��a��

In general if a � x� 
 x� 
 � � � 
 xn � b and �
��
	xi���xi


is smooth, then the above
argument gives thatZ

�

f�z�dz �

nX
i��

�F ���xi��� F ���xi����� � F ���b�� � F ���a���

Corollary 4.15. If D is a domain, f � D �� C is continuous with antiderivative F and
� is a closed path, then Z

�

f�z�dz � ��

Proof. Immediate.

Lemma 4.16. Let D be a star-domain and f � D �� C be continuous. Then the fol-
lowing are equivalent.

1. f has an antiderivative F on D.

2.
R
�
f�z�dz � � for all closed paths � in D.

3.
R
�T

f�z�dz � � for the boundary �T of any triangle T such that T � D 2.

Proof. It is enough to do �
 �. Take z� � D such that 	z� � z�� � D  z � D and
define

F �z� �

Z
	z��z
�

f�w�dw�

Then take T to be the triangle with vertices z�, z and z 
 h. Since D is open,
	z � z 
 h�� � D for jhj sufficiently small which gives that T � D. Now

F �z 
 h�� F �z� �

Z
	z�z�h
�

f�w�dw� so that

jF �z 
 h�� F �z�� hf�z�j �

�����
Z
	z�z�h
�

�f�w� � f�z��dw

�����
� sup

w�	z�z�h

jf�w�� f�z�j jhj �

Choose � 	 � such that jhj 
 � 
 jf�z 
 h�� f�z�j 
 �. Then

jF �z 
 h�� F �z�� hf�z�j � � jhj �

2Including the boundary and interior.
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Chapter 5

Cauchy’s theorem and its
consequences

5.1 Cauchy’s theorem

Definition 5.1. Let D be a domain and f � D �� C be continuous. f is analytic (or
holomorphic)1 if f is differentiable at z z � D.

Theorem 5.2 (Cauchy’s theorem for triangles). Let D be a domain and T be a tri-
angle lying entirely in D. If f � D �� C is analytic, thenZ

�T

f�z�dz � ��

Proof. Let � �
��R
�T f�z�dz

�� and let l � L��T �. Now let T� � T . We can split T into
4 equally sized triangles T �� T �� T �� T  as shown, with all boundaries oriented in the
same direction as that of T .

Figure 5.1: Splitting up the triangle

Since the contributions from internal edges cancel,Z
�T

f�z�dz �

X
i��

Z
�T i

f�z�dz�

and � i � � such that ����
Z
�T i

f�z�dz

���� 	 �

�
�

1Outside Cambridge, an analytic function is one which has a power series expansion and a holomorphic
function is C differentiable on a domain.

19
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Put T� � T i for this i and repeat the process. We produce a sequence T�, T�, T�, � � �
such that ����

Z
�Tn

f�z�dz

���� 	 �

�n
and

L��Tn� �
l

�n
�

Since the Tn are closed, we can find z� �
T
�

i�� Tn. As f is differentiable at z�,
 � 	 �� � � 	 � such that

jw � z�j 
 � 
 jf�w�� f�z��� �w � z��f
��z��j 
 � jw � z�j �

Pick n such that Tn � B��z��. Then����
Z
�Tn

f�z�dz

���� �
����
Z
�Tn

�f�z�� f�z��� �z � z��f
��z���dz

����
� L��Tn�� sup

z��Tn

jz � z�j

� �L��Tn�
��

But
���R�Tn f�w�dw

��� 	 ��n�l�. This gives that � 
 �. But � 	 � is arbitrary, so

� � �.

Corollary 5.3 (Cauchy’s Theorem for a star-domain). Let D be a star-domain and
f � D �� C be analytic. ThenZ

�

f�z�dz � � for all closed paths � in D.

Proof. Result true for triangles. Thus f has an anti-derivative and thusZ
�

f�z�dz � ��

5.2 Homotopy

Definition 5.4. Let � � 	�� �� �� D and � � 	�� �� �� D be piecewise smooth closed
paths in a domain D. A homotopy from � to � is a function � � 	�� ��� �� D such that

1. � is continuous,

2. ���� t� � ��t�  t � 	�� ��,

3. ���� t� � ��t�  t � 	�� ��,

4.  s � 	�� ��, the path �s�t� defined by �s�t� � ��s� t� is closed and piecewise
smooth.
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D

φ

ψ

Figure 5.2: Two non-homotopic paths.

C i

(xi )φ

(xi )ψ
(x )i-1φ

(x )i-1ψ

φ

ψ

D

Figure 5.3: Elementary deformation

Definition 5.5. � is said to be an elementary deformation of � if � � � x� 
 x� 

� � � 
 xn � � and convex open subsets C�� � � � � Cn � D such that xi�� � t � xi 

��t� � Ci� ��t� � Ci.

Lemma 5.6. Let D be a domain, f � D �� C be analytic, � � 	�� �� �� D be a closed
path and � be an elementary deformation of �. ThenZ

�

f�z�dz �

Z
�

f�z�dz�

Proof. Let �i and �i be the restrictions to 	xi��� xi� of � and � respectively. Let
�i � 	��xi�� ��xi��. By Cauchy’s theorem for a star-domain,Z

�i

f�z�dz 


Z
�i

f�z�dz �

Z
�i

f�z�dz �

Z
�i��

f�z�dz � ��

Now summing from i � � � � � n gives thatZ
�

f�z�dz �

Z
�

f�z�dz�
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Proposition 5.7. Let D be a domain and let � � 	�� �� �� D and � � 	�� �� �� D be
homotopic. Then � � � ��� ��� � � � � �n � � such that �i is an elementary deformation
of �i��.

Proof. Let � � 	�� ��� �� D be a homotopy from � to �. 	�� ��� is compact, so ��	�� ����
is a compact subset of D. Now C n D is closed and disjoint from ��	�� ���� so
� � 	 � such that  z � ��	�� ���� and w �� D� jz � wj 	 �. Thus �s� t� � 	�� ���,
B���s� t�� � D. Also, � is uniformly continuous on 	�� ���, so � � 	 � such that

	
�s� s��� 
 �t� t���


���

 � 
 j��s� t�� ��s�� t��j 
 ��

Now pick n � N such that �
n 
 � and let �i � � i

n
� i � �� � � � � n. Let xj �

j
n and

Cij � B���xi� xj��.
But if i��

n � s � i
n and j��

n � t � j
n then

	
�s� s��� 
 �t� t���


���



�

n

 � 
 j��s� t�� ��i�n� j�n�j 
 �
 ��s� t� � Cij �

Thus �i is an elementary deformation of �i��.

Corollary 5.8. Let D be a domain, f � D �� C be analytic and �, � be homotopic
closed paths in D. Then Z

�

f�z�dz �

Z
�

f�z�dz�

Proof. Immediate from above.

Definition 5.9. Let D be a domain. A closed path � is contractible if it is homotopic
to a constant path.

Definition 5.10. A domain D is simply connected if every closed path is contractible.

Corollary 5.11 (Cauchy’s theorem for a simply connected domain).
Let D be a domain and f � D �� C be analytic. If the closed path � is contractible,
then Z

�

f�z�dz � ��

If D is simply connected thenZ
�

f�z�dz � � for all closed paths �.

Proof. Immediate.

Notation.

Br�z�� � B�z�� r� � fz � C � jz � z�j 
 rg

thus Br�z�� � B�z�� r� � fz � C � jz � z�j � rg�

C�z�� r� � Cr�z�� is the path t �� z� 
 re��	t for t � 	�� ��.
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5.3 Consequences of Cauchy’s Theorem

Theorem 5.12 (Cauchy’s Integral Formula). Let D be a domain and let f � D �� C

be analytic. Let z�, r be such that Br�z�� � D. Then  z � Br�z��,

f�z� �
�

��

Z
Cr�z��

f�w�

w � z
dw�

z0z
δ r

Proof. Take � 	 �. Let � 	 � be such that B��z� � Br�z�� and jw � zj � � 

jf�w�� f�z�j � �. Then

�����f�z�� �

��

Z
Cr�z��

f�w�

w � z
dw

����� �
�����f�z�� �

��

Z
C��z�

f�w�

w � z
dw

�����
since ��s� t� � �� � s��z� 
 re��	t� 
 s�z 
 �e��	t� is a homotopy from Cr�z�� to
C��z� in D n fzg in which f�w�

w�z is analytic. Thus

�

����� �

��

Z
C��z�

f�z�� f�w�

w � z
dw

�����
�

�

�

���

�
� ��

But � 	 � is arbitrary, so result follows.

Remark. Note that the proof of Cauchy’s integral formula given does not need the full
strength of homotopy invariance, since C��z� is clearly an elementary deformation of
Cr�z��

Theorem 5.13 (Liouville’s Theorem). Every bounded entire function is constant.

Proof. Let f � C �� C be analytic and jf�z�j � M  z � C . Take z�� z� � C and let
R 	 �maxfjz�j � jz�jg. Then
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jf�z��� f�z��j �

����� �

��

Z
CR���

�
f�w�

w � z�
�

f�w�

w � z�

�
dw

�����
�

����� �

��

Z
CR���

f�w��z� � z��

�w � z���w � z��
dw

�����
�

�

�

�RM jz� � z�j	
R
�


�
�

�M jz� � z�j

R
�

But R can be arbitrarily large, so result follows.

Theorem 5.14 (The Fundamental Theorem of Algebra). Every non-constant poly-
nomial has at least one root in C .

Proof. Let p be a non-constant polynomial and suppose that p has no roots. Then the
function �

p�z� is analytic on C . Suppose that

p�z� � anz
n 
 � � �
 a�� with an �� ��

Then if

jzj 	 max


�� �

jan��j
 � � �
 ja�j

janj

�
�

jp�z�j 	 janj jzj
n � �jan��j
 � � �
 ja�j� jzj

n��

	
�

�
janj jzj

n 	
�

�
janj �

So � M such that jzj 	 M 

��� �
p�z�

��� � �
an

. Now �
p�z� is continuous and BM ��� is

compact, so �
p is bounded in BM ���. Hence �

p bounded on all of C and thus constant.
This is a contradiction.

Proposition 5.15. Let g be a continuous function from fz � C � jz � z�j � rg to C .
Then

f�z� �

Z
Cr�z��

g�w�

�w � z�n
dw

is analytic on Br�z�� and

f ��z� � n

Z
Cr�z��

g�w�

�w � z�
n�� dw

Proof. Let �� � r � jz � z�j such that jw � z�j � r 
 jw � zj 	 ��. Now
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���� �

�w � z � h�
n �

�

�w � z�
n

���� ������
�

�

w � z � h
�

�

w � z

� n��X
k��

�

�w � z � h�
k
�w � z�

n���k

�����
�

����� h

�w � z � h� �w � z�

n��X
k��

�

�w � z � h�
k
�w � z�

n���k

�����
�

hn

�n��

� � as jhj � � independently of w�

When jhj � �,�����f�z 
 h�� f�z�� hn

Z
Cr�z��

g�w�

�w � z�
n�� dw

����� ������
Z
Cr�z��

hg�w�

�
�

�w � z � h� �w � z�

n��X
k��

�

�w � z � h�k �w � z�n���k

�
dw

�����
Using the same estimate as above, the bit in brackets converges to � as h � �.

Since g�w� is bounded on Cr�z��
� for jhj sufficiently small the whole integral is at

most � jhj.

Corollary 5.16. Let D be a domain and f � D �� C be analytic. Then f is infinitely
differentiable inside Br�z��, Br�z�� � D and  z � Br�z���

f �n��z� �
n�

��

Z
Cr�z��

f�w�

�w � z�
n�� dw�

Proof. The case n � � is Cauchy’s integral formula. If we have it for n, then the
proposition gives it for n
 �.

Theorem 5.17 (Morera’s Theorem). Let D be a star-shaped domain and
f � D �� C be continuous. If Z

�T

f�z�dz � �

for all triangles T � D then f is analytic.

Proof. The condition implies that f has an antiderivative F , which is analytic. F is
therefore infinitely differentiable, so f is analytic.

Remark. Now let D be an arbitrary domain and let z � D. Since � � 	 � such that
B�z� � D and B�z� is star-shaped, one can easily extend Morera’s Theorem to any
domain.
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Chapter 6

Power Series

6.1 Analyticity and Holomorphy

Lemma 6.1. Consider a power series
P
�

n�� an�z � z��
n. If this sum converges for

some z with jz � z�j � �, then it converges for all w with jw � z�j 
 � and for any
r 
 �, the convergence is uniform in Br�z��.

Proof. Since
P
�

n�� an�z � z��
n converges, then � M such that janj jz � z�j

n
�

janj �n �M  n. If jw � z�j 
 �, then�����
�X

n�N

an�w � z��
n

����� �M

�X
n�N

����w � z�
�

����
n

�
�X

n�N

�
r

�

�n

� M

�
r

�

�n
�

�� r
�

� � independently of w.

Definition 6.2. The radius of convergence of a power series
P
�

n�� an�z � z��
n is

R � supfr � � z such that jz � z�j 
 r and
�X
n��

an�z � z��
n converges.g�

Lemma 6.3. Let D be a domain, � � 	a� b� �� D be a path and fn � D �� C be contin-
uous. Suppose fn � f uniformly on ��. ThenZ

�

fn�z�dz �

Z
�

f�z�dz�

Proof. Let � 	 �. Then � N such that  n 	 N  z � ��, jfn�z�� f�z�j � 
L��� .

Then ����
Z
�

fn�z�dz �

Z
�

f�z�dz

���� �
����
Z
�

fn � fdz

����
� ��

27
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But � 	 � is arbitrary, so result follows.

Lemma 6.4. Let f�z� �
P�

n�� an�z� z��
n and g�z� �

P�

n�� bn�z� z��
n. Suppose

there exists a sequence �zk��k�� � z�, zk �� z� and f�zk� � g�zk�. Then an � bn for
all n.

Proof. Suppose otherwise. Then let N be minimal such that aN �� bN . Now let
cn � an � bn. Then

f�z�� g�z� �

�X
n�N

cn�z � z��
n

� �z � z��
n

�
cN 
 �z � z��

�X
n�N��

cn�z � z��
n�N��

�
�

For jz� � zkj sufficiently small, then

jzk � z�j

�����
�X

n�N��

cn�z � z��
n�N��

����� 
 �

�
jcN j

and thus f�zk�� g�zk� �� �.

Lemma 6.5. Let f�z� �
P�

n�� an�z � z��
n with radius of convergence R. Then f is

analytic in BR�z�� and f ��z� �
P
�

n�� nan�z � z��
n��.

Proof. Let z � BR�z��. Pick r such that jz � z�j 
 r 
 R. Let

fN �z� �

NX
n��

an�z � z��
n�

Then fN � f uniformly on Br�z��. Since jw � z�j � r 
 jw � zj 	 r � jz � z�j,
we have

fN�w�

w � z
�

f�w�

w � z
and

fN �w�

�w � z��
�

f�w�

�w � z��
uniformly for jw � z�j � r�

But

fN �z� �
�

��

Z
Cr�z��

fN �w�

w � z
dw �

�

��

Z
Cr�z��

f�w�

w � z
dw�

Therefore

f�z� �
�

��

Z
Cr�z��

f�w�

w � z
dw�

Hence f is differentiable at z and

f ��z� �
�

��

Z
Cr�z��

f�w�

�w � z��
dw�

Also,

f �N�z� �
�

��

Z
Cr�z��

fN �w�

�w � z��
dw �

�

��

Z
Cr�z��

f�w�

�w � z��
dw � f ��z��

Hence f ��z� �
P
�

n�� nan�z � z��
n as claimed.
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Theorem 6.6 (Taylor’s Theorem). Let D be a domain and then f � D �� C be an-
alytic. Let z� � D and let R be such that BR�z�� � D. Then there exist unique
coefficients �an��n�� such that

f�z� �

�X
n��

an�z � z��
n  z � BR�z���

Proof. Let z � BR�z�� and let r be such that jz � z�j 
 r 
 R. Then by Cauchy’s
integral formula,

f�z� �
�

��

Z
Cr�z��

f�w�

w � z
dw

�
�

��

Z
Cr�z��

f�w�

�w � z��� �z � z��
dw

�
�

��

Z
Cr�z��

f�w�

w � z�

�

�� z�z�
w�z�

dw

�
�

��

Z
Cr�z��

f�w�

w � z�

�X
n��

�
z � z�
w � z�

�n
dw�

As
��� z�z�w�z�

��� 
 �, the convergence is uniform, so can exchange the sum and integral to
get

f�z� �

�X
n��

�z � z��
n

��

Z
Cr�z��

f�w�

�w � z��
n�� dw�

To get uniqueness use above lemma.

Theorem 6.7 (Identity Theorem). Let D be a domain and f� g � D �� C be analytic.
Suppose zk � z��� D�, zk �� z� and f�zk� � g�zk� for all k. Then f�z� � g�z�  z �
D. In particular, setting g � � gives that the zeros of a non-constant analytic function
are isolated.

Proof. Define U � fz � D � f �n��z� � g�n��z� ng. Now U �� � since z� � U as
the earlier result on uniqueness of power series implies that the Taylor expansions of f
and g at z� are the same.

Now U is closed, since

U �

��
n��

�
f �n� � g�n�

���
�f�g� �

If z � U , then the Taylor expansions of f and g agree at z, so f � g in some B��z�
and then for y � B��z�, f and g must have the same nth derivatives at y. Thus U is
open and since D is connected, U � D.

Proposition 6.8. Let D be a domain, z� � D and f � D �� C be analytic such that
f �� �. Then there exist a unique k 	 � and a unique analytic function g such that
g�z�� �� � and f�z� � �z � z��

kg�z�.
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Proof. Let the Taylor expansion of f at z� be
P
�

n�� an�z � z��
n. Now choose N

minimal such that aN �� �. (This is do-able since f �� �.) Thus we can write

f�z� � �z � z��
N

�X
n��

an�N �z � z��
n

in some B��z��. Set

g�z� �

�P
�

n�� an�N �z � z��
n if jz � z�j 
 �

�z � z��
�Nf�z� if z �� z��

These two cases agree when � 
 jz � z�j 
 � and f�z� � �z � z��
Ng�z�, g�z�� �

aN �� �. Now if f�z� � �z � z��
k�g��z� � �z � z��

k�g��z�  z � D, take k� � k�
without loss of generality. Then for z �� z� we have

g��z� � �z � z��
k��k�g��z��

Thus if k� 
 k�, g� � � as z � z� and so g�z�� � �. Thus g��z� � g��z� if z �� z�
and hence g� � g�.

Theorem 6.9 (Riemann’s Removable Singularity Theorem). Consider a domain D
with z� � D. Let f � D n fz�g �� C be analytic. Then if f is bounded near z� (i.e.
� � 	 ��M such that z � B��z��
 jf�z�j �M ), f � a as z � z� and the function

g�z� �

�
f�z� z �� z�

a z � z�

is analytic.

Proof. Define h � D �� C by

h�z� �

�
�z � z��

�f�z� z �� z�

� z � z��

This is differentiable at z �� z�, and also����h�z�� h�z��

z � z�

���� �M jz � z�j when jz � z�j 
 ��

Hence h is analytic and so has Taylor series
P
�

n�� an�z�z��
n. Now h�z�� � h��z�� �

�, so if we define g�z� �
P�

n�� an���z � z��
n, then g�z� � f�z� for z �� z�. Hence

g�z�� a as z � z�, so f�z�� a as z � z�.

Proposition 6.10. Let D be a domain, z� � D and f � D n fz�g �� C be analytic.
Suppose jf�z�j � � as z � z�. Then there are a unique integer k 	 � and unique
analytic function g � D �� C such that g�z�� �� � and f�z� � �z � z��

�kg�z� when
z �� z�.

Proof. Since jf�z�j � � as z � z�. Then we can find � 	 � such that z � B��z��

jf�z�j 	 �. Let

h�z� �

�
�

f�z� � 
 jz � z�j 
 �

� z � z��
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As �
f�z� � � as z � z�, h is analytic in B��z��. Then � k and l � B��z�� �� C

such that l is analytic and h�z� � �z � z��
kl�z� if z � B��z��, l�z�� �� �. Since l is

continuous, we can find � 
 �� � � such that l�z� �� � if z � B���z��. Now let

g�z� �

�
�

l�z� � � jz � z�j 
 ��

�z � z��
kf�z� z �� z��

The definitions agree and g has the required properties. Uniqueness follows as before.

6.2 Classification of Isolated Singularities

Definition 6.11. Let D be a domain, z� � D and f � D n fz�g �� C be analytic. Then
z� is a singularity of f .

� If f is bounded in a neighbourhood of z� the singularity is called removable
as we can define an analytic function g � D �� C such that f and g agree on
D n fz�g.

� If jf�z�j � � as z � z� and if k is the integer from previous proposition the
singularity is a pole of order k.

� All other singularities are called essential.

Theorem 6.12 (Casorati-Weierstrass Theorem). Let D be a domain, z� � D and
f � D n fz�g �� C be analytic with an essential singularity at z�. Then for every
w � C , � zn � z� such that f�zn�� w.

Proof. Suppose otherwise. Then we can find w � C such that � 
 jz � z�j 
 � 

jf�z�� wj 	 �. Then g�z� � ���f�z� � w� is analytic and bounded in fz � � 

jz � z�j 
 �g. Then g has a removable singularity at z� (in B��z��), so we can find an
analytic function h � B��z�� �� C such that h�z� � g�z� when z �� z�. Thus, when
z �� z�, f�z� � w
 �

h�z� and so f has either a pole or removable singularity at z�.

Theorem 6.13 (Laurent’s Theorem). 1 Let D be the (non-empty) domain fz � a 

jz � z�j 
 bg and let f � D �� C be analytic. Then there exist unique coefficients
�an�n�Zsuch that

f�z� �

�X
n���

an�z � z��
n  z � D�

Proof. Pick r and � such that a 
 r 
 jz � z�j 
 � 
 b. Let � be the straight line
path from z� 
 r to z� 
 �. 2 It is not hard to see that the closed path C��z�� � �� �-
Cr�z�� � � is homotopic in D n fzg to a path of the form C��z�. Hence (by Cauchy’s
Integral Formula and homotopy invariance)

f�z� �
�

��

Z
C��z��

f�w�

w � z
dw �

�

��

Z
Cr�z��

f�w�

w � z
dw�

1This is not strictly in the schedules, but is covered in Complex Methods. The proof that follows is
slightly sketchy.

2Unless this goes through z, in which case take a small detour about z. I told you it was sketchy.



32 CHAPTER 6. POWER SERIES

Just as in the proof of Taylor’s theorem, expand in binomial series to get

�

��

Z
C��z��

f�w�

w � z
dw �

�X
n��

an�z � z��
n

an �
�

��

Z
C��z��

f�w�

�w � z��n��
dw

and

�
�

��

Z
Cr�z��

f�w�

w � z
dw �

�

��

Z
Cr�z��

f�w�

z � z� � �w � z��
dw

as before,

�

��X
n���

an�z � z��
n

an �
�

��

Z
Cr�z��

f�w�

�w � z��n��
dw

or, using homotopy invariance

an �
�

��

Z
C��z��

f�w�

�w � z��n��
dw�

For uniqueness, note that

�

��

Z
C��z��

f�z�

�w � z��k��
dw �

�X
n���

an
��

Z
C��z��

�w � z��
n�k�� dw

� ak�

Let D be a domain, z� � D, f � D n fz�g �� C be analytic. Pick R such that
BR�z�� � D. Then f has a Laurent expansion f�z� �

P
�

n��� an�z � z��
n in

fz � � 
 jz � z�j 
 Rg. Let k � inffn � an �� �g. Then if k 	 �, f has a removable
singularity at z� and if k is finite but negative, f has a pole of order �k at z�. If k is
not finite, then f has an essential singularity at z�. The converse is also clear.

Theorem 6.14 (Maximum Modulus Theorem). Let D be a domain and f � D �� C

be analytic. Suppose jf j has a local maximum. Then f is constant.

Proof. Suppose z� � D and � are such that jf�z��j 	 jf�z�j whenever z � B��z��.
Then Cauchy’s integral formula implies

f�z�� �
�

��

Z
C��z��

f�z�

z � z�
dz�
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Now pick � such that jf�z��j � e	
f�z��.

����� �

��

Z
C��z��

f�z�

z � z�
dz

����� � �

��

Z
C��z��

e	
f�z�

z � z�
dz

�
�

��

Z ��

�

e	
f�z� 
 �e	��

�e	�
��e	�d�

�
�

�

Z ��

�

�
	
e	
f�z� 
 �e	��



d�

�
�

�

Z ��

�

��e	
f�z� 
 �e	��
��d�

� jf�z��j �

But we know that equality occurs, so e	
f�z�� � e	
f�z� 
 �e	�� � (using a
result of real analysis). So there exist non-isolated z where f�z� � f�z��, hence f is
constant.
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Chapter 7

Winding Numbers

7.1 Introduction and Definition

Definition 7.1. Let z � C n f�g. A value of log z is a complex number w such that
ew � z. If w � a
 �b is a value of log z, then a � log jzj. It is clear that a 
 �b is a
value of log z iff a
 ��b
 �n� is a value of log z  n � Z.

Definition 7.2. Let z � C n f�g. A value of arg z is a real number � such that z �
jzj e	
. � is a value of arg z iff � 
 �n is a value of arg z  n � Z iff log jzj
 �� is a
value of log z.

Definition 7.3. The principal value of
log z
arg z

is
log jzj
 ��

�
such that � 
 � �

.

Definition 7.4. Let D be a domain such that � �� D. A continuous branch of
log z
arg z

is a continuous function f � D �� C such that f�z� is a value of
log z
arg z

 z � D. This

need not exist (for instance if D � C n f�g).

Before doing anything with this, a lemma is useful.

Lemma 7.5. Let D be a simply connected domain and f � D �� C be analytic. Then
f has an antiderivative.

Proof. Take z� � D (D tacitly assumed to be non-empty) and define F by setting

F �z� �

Z
�

f�w�dw, where � is some path from z� to z.

By Cauchy’s Theorem, this is well-defined and the proof that F is an antiderivative
of f is more or less identical to the proof that

R
�T f�w�dw � � for all triangles T

implies that f has an antiderivative in a star-shaped domain.

Lemma 7.6. Let D be a simply connected domain not containing �. Let z� be in D
and w� be a value of log z�. Then there is a unique continuous branch L of log on D
such that L�z�� � w�.

35
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Proof. f�z� � �
z is analytic on D so by above lemma has an antiderivative L. By

adding a suitable constant we may assume that L�z�� � w�. Now consider g�z� �
ze�L�z�. g��z� � e�L�z���� zL��z�� � � so g is constant on D. Now g�z�� � �, so L
is a continuous (and even analytic) branch of log z. If L� is another continuous branch,
then L��z��L�z�

��	 is an integer for all z � D. But L� and L are continuous, so this must
be constant and as L�z�� � L��z��, L � L�.

Definition 7.7. Let D be a simply connected domain, take z� � C nD and consider a
path � � 	a� b� �� D. The change (or variation) in log�z � z��is defined as L���b�� �
L���a�� where L is any continuous branch of log�z � z�� on D. Note that this is well
defined, and from the way that L was produced, is also equal toZ

�

dz

z � z�
�

Now let D be any domain, z� � D and � � 	a� b� �� D be a path such that z� �� ��.
Since �� is compact and �C nD��fz�g is closed, there exists � 	 � such that B�z� �
D and z� �� B�z� for all z � ��.

Also � is uniformly continuous, so � n � N such that

jx� yj �
�

n

 j��x� � ��y�j 
 ��

Now let xi � a 
 i
n �b � a� for i � �� �� � � � � n and let �i be the restriction of � to

	xi��� xi� and Ci � B���xi��. Then ��i � Ci.

Definition 7.8. The change in log�z � z�� along � is defined to be the sum of the
changes in log for each of the �i. This is not circular – the Ci’s are manifestly simply
connected and do not contain z�. Thus the change in log is also equal toZ

�

dz

z � z�
�

When we chose continuous branches Li of log�z � z�� in each Ci, we could, by
adding suitable constants, ensure that Li���xi�� � Li�����xi��. If we do that, then
the change along � is

nX
i��

Li���xi��� Li���xi���� � Ln���b�� � L����a��

If � is closed, this must be �k� for some k � Z.

Definition 7.9. The winding number of a closed path � about z� is defined as this k. It
is denoted as w��� z�� and is equal to

�

��

Z
�

dz

z � z�
�

From the above formula, we see that for z� �� ��, w��� z�� is an analytic function
of z� with derivative

�

��

Z
�

dz

�z � z���
�
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It is therefore continuous, and as it only takes integer values must be constant on
components of C n ��. Since �� is compact, there is a unique unbounded component
of C n �� where the winding number is zero.

To see this, let jz�j 	 �maxfjzj � z � ��g. Then

w��� z�� �
�

�

����
Z
�

dz

z � z�

���� � L���

 jz�j
� � as jz�j � ��

7.2 Residues

Let D be a domain and f be a function analytic on D except at finitely many points
z�� � � � � zk. Given z � D, we can find � 	 � such that B��z� contains none of the
zi unless z � zi, in which case B��z� � fz�� � � � � zkg � fzig. Inside B��z�, f has a
Laurent expansion

f�w� �

�X
n���

an�w � z�n�

Definition 7.10. The residue of f at z is defined as a�� and is written Res�f� z�.

If z �� fz�� � � � � zkg, then Res�f� z� � �. Now, at zi, write

f�z� �

�X
n���

a�i�n �z � zi�
n�

Then

Res�f� zi� �
�

��

Z
C��zi�

f�z�dz�

This gives an alternative definition of Res�f� zi� not involving Laurent expansions.

Definition 7.11. The principal part of f at zi is defined to be the function

gi�z� �

��X
n���

a�i�n �z � zi�
n�

g is analytic on D n fzig and f � gi has a removable singularity at zi.

Theorem 7.12 (Cauchy’s Residue Theorem). Let D be a simply connected domain
and f and z�� � � � � zk be as above. Let � be a closed path in D such that �� �
fz�� � � � � zkg � �. Then

Z
�

f�z�dz � ��

kX
j��

Res�f� zi�w��� zi��

Proof. f � �g� 
 � � � 
 gk�
1 is analytic on D except for removable singularities at

z�� � � � � zk. Let h � D �� C be analytic such that h�z� � f�z� � �g��z� 
 � � � 


1The gi’s are the relevant principal parts.
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gk�z�� z � D n fz�� � � � � zkg. Then by Cauchy’s theorem,Z
�

h�z�dz � � and hence

Z
�

f�z�dz �

kX
j��

Z
�

gj�z�dz

� ��

kX
j��

Res�f� zi�w��� zi��

Definition 7.13. Let D be a domain, z� � D and let f be a function analytic when
� 
 jz � z�j 
 � for some � 	 �. Recall that if f has a removable singularity or
pole at z� we can write f�z� � �z� z��

kg�z� where k and g are uniquely determined,
g�z�� �� � and g analytic. Then the integer k is called the order of f at z� and is
written ord�f� z��.

Theorem 7.14. Let D be a domain and let f � D �� C be analytic except at finitely
many poles. Suppose also that f has finitely many zeros in D, and let the zeros and
poles be z�� � � � � zk. Let � be a closed path in D such that ���fz�� � � � � zkg � �. Then

�

��

Z
�

f ��z�

f�z�
dz �

kX
j��

ord�f� zj�w��� zj��

Proof. By the residue theorem

�

��

Z
�

f ��z�

f�z�
dz �

kX
j��

Res�
f �

f
� zj�w��� zj��

Near zj , f � �z � zj�
rg�z� with g�zj� �� � and r � ord�f� zj�. Then

f ��z�

f�z�
�

r

z � zj


g��z�

g�z�

and Res� f
�

f � zj� � ord�f� zj�. Summing over j gives the result.

Notation. Write ZP �f� �� for �
��	

R
�
f ��z�
f�z� dz.

N.B.

�

��

Z
�

f ��z�

f�z�
dz �

�

��

Z
f��

dz

z
� w�f � �� ���

Theorem 7.15 (Rouché’s Theorem). Let D be a domain, � be a closed path in D and
f and g be functions with the following properties:

1. f and g are analytic on D except for finitely many poles, none of which lie on
��.

2. f and f 
 g have finitely many zeros, none of which lie on ��.
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3. jg�z�j 
 jf�z�j  z � ��.

Then ZP �f 
 g� �� � ZP �f� ��.

Proof. It follows from the definition of order at a point that ord�f
g� z� � ord�f� z�


ord� f�gf � z�. Hence, putting h�z� � � 
 g�z�
f�z� , we have ZP �f 
 g� �� � ZP �f� �� 


ZP �h� ��. But ZP �h� �� � w�h ��� ��, and for z � ��, �h�z� 	 ��
��� g�z�f�z�

��� 	 �. But

there is a continuous branch of log on the right half-plane, so w�h � �� �� � �.

Theorem 7.16 (Local Mapping Theorem). Let D be a domain, z� � D and f � D ��
C be analytic and non-constant. Then for � 	 � sufficiently small, there exists � 	 �
such that whenever � 
 jw � w�j 
 �, there are exactly k values of z such that
� 
 jz � z�j 
 � and f�z� � w, where k � ord�f � w�� z��.

Proof. Choose � 	 � small enough such that whenever � 
 jz � z�j 
 ��,

1. f�z� �� w�,

2. f ��z� �� �,

3. z � D.

Note that � and � are possible by the Identity Theorem. Now C�z��
� is compact,

so put � � inffjf�z�� w�j � z � C�z��
�g 	 �.

Then  z � C�z��
�, jw � w�j 
 jf�z�� w�j. Hence by Rouché’s Theorem,

k � number of zeros up to multiplicity of f�z�� w� in B�z��

� number of zeros of f�z�� w� �� f�z�� w� � �w � w����

But every zero of f�z�� w is simple, since f � �� �.

Corollary 7.17 (Open Mapping Theorem). Let D be a domain and f � D �� C be
analytic and non-constant. Then if U � D is open, f�U� is open.

Proof. Let w� � f�U� and z� be such that f�z�� � w�. The Local Mapping Theorem
provides � 	 � such that B��w�� � f�B�z��� � f�U�. Hence f�U� is open.

Remark. The Maximum Modulus Theorem follows immediately.
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Chapter 8

Cauchy’s Theorem (homology
version)

D

φ

Let D be the domain and � the path shown. It can be shown by methods of algebraic
topology that � is not contractible in D. However, it is also clear that

R
�
f�z�dz � �

for all analytic functions f on D. We shall ask which paths have this property. This
section of the course is starred.

A chain in a domain D is a finite sequence ���� � � � � �N � of paths. Two chains
���� � � � � �N � and ���� � � � � �N � are directly equivalent if there is a permutation 
of the set f�� �� � � � � Ng such that �i � ���i� for every i. A subdivision of a chain
���� � � � � �N � is a chain

����� ���� � � � � ��M� � ���� � � � � ��M� � � � � � �N�� � � � � �NMN
�

such that �i � �i� � �i� � � � � � �iMi
for every i. Two chains are equivalent if they

have directly equivalent subdivisions.

41
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A cycle is a chain ���� � � � � �N � such that each �i is a closed path1. Two cycles
���� � � � � �N � and ���� � � � � �N � are homotopic if �i is homotopic �i for every i. Two
cycles� � ���� � � � � �N � and� � ���� � � � � �N � are homologous if there is a sequence
� � ������ � � � ��K � � such that for every i, �i�� and �i are either equivalent or
homotopic.

If � � ���� � � � � �N � is a chain in a domain D and f � D �� C is continuous, thenR
�
f�z�dz is defined to be

PN
i��

R
�i
f�z�dz. If � is also a cycle, and z� � C n ��,

then the winding number of � about z� is defined to be

w��� z�� �
NX
i��

w��i� z�� �
�

��

Z
�

dz

z � z�
�

Theorem 8.1. Let D be a domain and � be a cycle homologous in D to a point. ThenR
�
f�z�dz � � for every analytic function f � D �� C .

Proof. Trivial consequence of homotopy invariance.

This certainly deals with the path shown above. The converse of this theorem is also
true, but somewhat harder to prove. The main result of this section is a characterization
in terms of winding numbers of those cycles for which the integral of any analytic
function vanishes.

Theorem 8.2. Let D be a domain and let � be a cycle in D with w��� z�� � � for
every complex number z� �� D. Then

R
� f�z�dz � � for every analytic function

f � D �� C .

The converse of this theorem is obvious, using the function f�z� � �z � z��
��. In

order to prove this theorem we need another set of definitions from algebraic topology
and 3 easy lemmas.

Given a real number � 	 �, we define ���� to be the set of all squares S � C of
the form

fz � C � m� � �z � �m
 ���� n� � �z � �n
 ���g

where m and n are integers. Given such a square S, we denote by �S the boundary
of S, oriented anticlockwise. A square complex of mesh � is a subset � � ����. If
� � fS�� � � � � SNg is a square complex, then an edge of one of the Si is called internal
if it is shared by some other Sj , and is otherwise called external. The boundary ��
of � is defined to be the chain of all external edges of � (with their directions coming
from the orientations of the relevant �Si). We write �� for the union of the squares
that make up � (so that �� � C and � � P 	C �).

Lemma 8.3. Let � be a square complex. Then �� is equivalent to a cycle.

Proof. We can form a directed graph, where the vertices are all points of the form
��m
n�� and the edges are the external edges of � (with their directions). It does not
take long to check that at any vertex the number of edges going in equals the number
of edges coming out. Now start at a vertex v which has at least one vertex which has
at least one edge coming out of it, and move along edges in the forward direction for
as long as possible without repeating an edge. As there are finitely many edges this
process must stop, and because of the condition just mentioned must stop at v. The
result is a closed path. If we remove this path, we obtain a directed graph with fewer
edges satisfying the same condition, so by induction the result is proved.

1It is more usual to define a cycle to be a chain equivalent to what I have called a cycle.
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Lemma 8.4. Let � � fS�� � � � � SNg be a square complex and let D be a domain
containing��. Let f � D �� C be continuous. Then

R
��

f�z�dz �
PN

i��

R
�Si

f�z�dz.

Proof. The contributions to the right-hand side from integrals along internal edges can-
cel, leaving only the integrals along external edges, which by definition is the left-hand
side.

Lemma 8.5. Let � � fS�� � � � � SNg be a square complex and let z� � int����. Let f
be a function analytic on a domain that includes ��. Then f�z�� � �

��	

R
��

f�z�
z�z�

dz.

Proof. Firstly, suppose z� lies in the interior of Si for some i. When j �� i, Cauchy’s
theorem implies that

R
�Sj

f�z�
z�z�

dz. Also, �Si is homotopic to C��z�� for some � 	 �,

so by Cauchy’s integral formula f�z�� � �
��	

R
�Si

f�z�
z�z�

dz. The result then follows
from above lemma.

Now if z� lies on an internal edge the result follows by continuity.

Proof of theorem. Let X � D be C n fz � w��� z� � �g � fz � w��� z� �� �g � ��.
Since w��� z� is continuous on the open set C n ��, we see that fz � w��� z� � �g is
open, so that X is closed. Also, since w��� z� � � on the unbounded component of
C n ��, X is bounded. Thus X is compact, from which it follows that we can choose
� 	 � such that B���z� � D whenever z � X .

Define a square complex � of mesh � by taking every square S � ���� such that
S � C �� �. Note that S is included even if S intersects X only on the boundary - this
is important. It is clear that X � ��, but we also have X � int �� as the definition of
� does not allow z � X to be on an external edge. Also, by our choice of �, we have
�� � D.

Hence, if z � �� � X , above lemma gives that f�z� � �
��	

R
��

f�w�
w�z dw. It follows

that Z
�

f�z�dz �
�

��

Z
�

Z
��

f�w�

w � z
dwdz

�

Z
��

f�w�
�

��

Z
�

dz

w � z
dw

� �

Z
��

f�w�w��� w�dw�

The above change of integrals will not be justified, but we are talking about con-
tinuous functions on closed, bounded subsets of R, where the justification is relatively
easy. Now sinceX��� � �, we havew��� w� � � for everyw � ��. This completes
the proof.
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