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Chapter 1

Topological Spaces

1.1 Introduction

Definition 1.1. A topological spaceis a set X together with a collection 7 of subsets
of X satisfying the following axioms.

1L0,Xer

2. fUy,...,U, € 7, thenU;Nn---NU, € 7, (thatis, 7 is closed under finite
intersections)

3. Any union of setsin 7 isin 7 (or 7 is closed under any unions).

Definition 1.2. 7 is called a topology on X. The setsin 7 are called open sets. A
subset of X is closed if its complement is open.

Examples. 1. If (X,d) is a metric space and 7 the collection of open sets (in a
metric space sense) then (X, 7) is a topological space.

2. If X isany set and 7 is the power set of X, (X, 7) is atopological space. 7 is
called the discrete topology on X..

3. If Xisanysetand r = {0, X}, (X, 7) isatopological space. T is called the
indiscrete topology on X.

4. If X isanyinfiniteset,and 7 = {Y C X : X \ Y isfinite} U {0} then (X, 7) is
atopological space. T is called the cofinite topology on X .

5. If X isany uncountableset, and 7 = {Y C X : X \ Y is countable} U {0} then
(X, 7) isatopological space. 7 is called the cocountable topology on X .

Definition 1.3. Let A bea subset of a topological space. The closure of A4, denoted A,
istheintersection of all closed sets containing A. Note that A is closed and any closed
set containing A contains A.

Definition 1.4. Let A be a subset of a topological space. Theinterior of A, denoted
int A or A° isthe union of all open setsin A. Notethat int A is open and any open set
inAisinint A.

Definition 1.5. The boundary A of aset Ais A \ int A.

1



2 CHAPTER 1. TOPOLOGICAL SPACES

Definition 1.6. Let (z,,)$° be a sequence in a topological space (X, 7). We say that
x, convergesto z (x,, — x) if for every open set U such that x € U, 3 N such that
n > N = x, € U. Thisagreeswith the usual definition for metric spaces.

Definition 1.7. Let (X,7) and (Y, o) be topological spacesand let f: X — Y. We
say that f iscontinuousif for every U € o, f~*(U) € 7. (Or inverseimage of an open
set isopen.)

It follows from results in Analysis that this definition agrees with the usual ¢ — §
definition if X and Y are metric spaces.

Definition 1.8. Let (X, ) beatopological spaceand let x € X. A neighbourhood of
z isaset NV that contains an open set containing z.

Proposition 1.9. Let (X, 7) and (Y, o) be topological spacesand let f: X — Y.
Then the following are equivalent :-

1. fiscontinuous.

2. For every z € X and every neighbourhood M of f(z) there exists a neighbour-
hood N of z suchthat f(N) C M.

Proof. Firstly do 1 = 2. M contains an open set U containing f(z). Then N =
f71(U) is a neighbourhood of z such that f(N) C U.

Now do the case 2 = 1. Let U be an opensubset of Y. Foreveryz € f~(U), U is
a neighbourhood of f(z). We can find a neighbourhood N . of « such that f(N,.) C U.
Now N, contains an open set V,. containing x. Let

Then f(V,) C U Vz,s0 f(V) cUandV C fY(U). BtV > f1(U)soV =
f~Y(U). Visopen,so f~1(U) is open and f is continuous. O

Definition 1.10. Let (X, 7) and (Y, o) betopological spacesand f: X — Y. fisa
homeomor phismif it is continuous with a continuous inverse.

Example. R and (0, 1) with usual metrics are homeomorphic.

1.2 Building New Spaces

Definition 1.11. Let (X, 7) be a topological spaceand Y C X. The subspace topol-
ogyonY is

{UNY :U e}

Proposition 1.12. Let (X,d) be a metric space, Y ¢ X and U C Y. Then the
following are equivalent.

1. U isopenin the subspace topology on Y.

2. Foreveryu € U,3§ > 0 suchthatifv € Y, d(u,v) < §thenv € U.
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Proof. Do1 = 2. Letu € U. Since U openinY, 3V C X, V open such that
U=VnY. Then3 6 > 0 such that d(u,v) < § = v € V. Now d(u,v) < ¢ and
veY=veVnY=U.

Now do 2 = 1. Suppose U satisfies 2. For every u € U, pick 6 = §(u) > 0 such
that d(u,v) < dandv € Y = v e U. Let N, = {v € X : d(u,v) < §}. Now N, is
openand V = J, ., Nuisopen. Now vV NnY = U. O

Definition 1.13. Let (X, 7) be a topological space and ~ be an equivalence relation
on X. Denotethe set X/~ by Y andlet ¢: X — Y be the equivalence map. (ie if
x € X, q(z) isthe equivalence class of z). The quotient topologyonY is{U € Y :
q~'(U) €T}

N.B. 1. ¢ (U) istheunion of the equivalence classesin U.

2. Notice ¢ is continuous and that the quotient topology is the largest topology
making it so.

Examples. 1. Let 7 be the usual topology on R. Then the subspace topology on
Z C R coincides with the discrete topology on Z.

2. Let 7 beasin 1. Then theinterval (1, 1] is open in the subspace topology on
[0, 1].

3. Let ~ bethe equivalencerelationon R definedbyz ~ y <& = —y € Z. Let [z]
denote the equivalence class of z. Then the map

¢p: R/~ T={2eC:|z| =1}
is both well defined and a homeomor phism.

Definition 1.14. Let (X, 7) and (Y, o) be topological spaces. The product topology
on X x Y isthecollection of all possible unions of sets of theformU x V withU € 7
andV € o. Smilarly, if (X;, ;)" , aren topological spaces, the product topology on
[T, X, isthecollection of all unionsof sets [, U; with U; € 7.

Example. If R hasits usual topology, then the product topology on R x R isthe same
asthe usual topologyon R x R = R?.

Proof. Let us write = for the product topology on R x R and o for the usual (Eu-
clidean) topology. Let U € o. Then given (z1,z2) € U, 3 6 > 0 such that
d((z1,22), (y1,y2)) < 6 = (y1,y2) € U. Then the w-open set (z — 2,z + 2) x
(x — g,m + g) C U and contains (z1,z2), so U is w-open, given o C w. Conversely,
every set of the form A x B with A, B open in R is open in R2. The union of such sets
is o-open, givingm C o and 7 = o. O

Exercise to show that X x (Y x Z) = X x Y x Z as topological spaces.

Definition 1.15. Let (X, 7) be atopological space. A basis for 7 (or a basis of open
sets) isasubset 5 C 7 suchthat every U € 7 isaunion of setsin 3. Thesetsin 3 are
called basic open sets. If z € X, then a basis of neighbourhoods of z is a collection
N of neighbourhoods of 2 such that every neighbourhood of = contains N € .

Examples.

Thesets U x V withU € T and V € ¢ are a basis for the product topology on
(X, 7) x (Y, 0).
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The sets {y : d(z,y) < 1} area basis of neighbourhoods for a point « in a metric
space.

Proposition 1.16. The quotient topology and product topology are topologies.

Proof. The result for the quotient topology follows easily from the fact that g~ pre-
serves unions and intersections. For products let (X;, )7, be topological spaces.
Everything is simple except closure under finite intersections. By induction it is suffi-
cient to prove for two sets.

If U; € 73, call Uy x --- x U, an open box?. Firstly, observe that

Uy x-xU)N(Vy x---x V)= (U1 NV) x - x (U, NV,)

and thus the intersection of two open boxes is an open box. Now take

U B’Y and U Cs,

vyer LISTAN

with all B,’s and C;’s open boxes.

Now
UBWQ U Cs = U Bwﬂc(s,
vel LISTAN vel
seA
which is a union of open boxes, and so open. O

1This is not standard terminology.



Chapter 2

Compactness

2.1 Introduction

Definition 2.1. Let (X, 7) be atopological space. An open cover of X isa collection
{Uy : v € I'} of open sets such that X = (J, . U,. If Y C X then an open cover of
Visacollection {U, : v € '} suchthat Y C |, o U

A subcover of acover i = {U,, : v € I'} isasubset V C ¢/ which is still an open
cover.

Examples. 1 {I, = (—n,n),n = 1,2,...} isan open cover for R. {[,2} isa
subcover.

2. TheintervalsI,, = (n — 1,n + 1) withn € Z forma cover of the reals with no
proper subcover.

Definition 2.2. Atopological space (X, 7) is compact if every open cover has a finite
subcover.

Examples. The open covers mentioned above show that R is not compact. Any finite
topological space is compact, asis any set with the indiscrete topol ogy.

2.2 Some compact sets

Lemma 2.3. Let (X, 7) beatopological spacewith Y C X. Then the following are
equivalent ;-

1. Y iscompact in the subspace topol ogy.
2. Every cover of Y by U, € 7 hasafinite subcover.

Proof. 1 = 2. LetY C U,p Uy With U, € 7. ThenY = (J (U, NY) with U,
open in Y. Since Y is compact 3 71, ...,7, such that Y = |J_, (U,, NY), which
givesthatY C i, Us,.

2= 1 LetY ={J p Vy with V, openinY. Since V, = U, NY for some U,
openinX,Y C UveF U.,,. By assumption, 31, ...,v, suchthatY c |J;_, U,,. This
impliesthatY = {J._, (U,, NY) =U;_, V4. O
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Theorem 2.4 (The Heine-Borel Theorem). The closed interval [a,b] C R is com-
pact.

Proof. Let[a,b] C U, Uy with U, openin R and let
K = {z € [a,b] : [a, ] is contained in a finite union of open sets}.

Letr = sup K. Thenr € [a,b], sor € U, for some . But U, is open,so 34 > 0
such that [r — 0,7 + ] C U,,. By the definition of r, [a, — 4] has a finite open cover,
thus [a, 7 + §] has a finite open cover. This is a contradiction, unless r = b. O

Theorem 2.5. A continuousimage of a compact set is compact.

Proof. Let X' be compact and let f: X — Y be continuous. Now f(X) C U, ¢ Uy
with U, open in Y. Since f is continuous, f~'(U,) is openin X Vv € I and
furthermore X = U, o f~4(U,). Since X is compact, 3 1, ...,7, such that X =
Uizi f71(U5). Thus f(X) C UL, Us,. 0
Theorem 2.6. A closed subset of a compact set is compact.

Proof. Let X be compactand K C X be closed. Let K C |, cp U, with U, open in

X. NowX = (X \K)U (Uwer Uw). Since X is compact, 3 a finite subcover and

X=X\K)UUL,Uy). ThenkK c U, U,,. O

Definition 2.7. A topological space (X, 7) is called Hausdorff, if given any two dis-
tinct z,y € X, thereexist dioint opensetsU and V withz € U andy € V.

Examples. 1. Any metric space is Hausdorff. Given z,y distinct, let U = {z :
d(z,z) < d(z,y)/2}andV = {z : d(y, z) < d(z,y)/2}.

2. Any set with more than one element and the indiscrete topology is not Hausdor ff.
Theorem 2.8. Every compact subset of a Hausdorff topological spaceis closed.

Proof. Let X be Hausdorffand K C X be compact. If z ¢ K andy € K then one can
find disjoint open sets Uy, and V,, with x € U, and y € V. For fixed z, the sets
Vey,y € K form an open cover of K. Hence 3 y1,...,y, such that K C [J;_, Vay,
Let Uy = N, Ugy, and V, = U1, Viy,. Notethat U, NV, = 0,2 € U,, K C V,
andU, N K = 0. ButUwKUx:X\Kisopen. O

Theorem 2.9. A product of finitely many compact sets is compact.

Proof. It is enough to do two sets. The general result follows by induction (and X x
Y xZ)=XxY x 2Z).

Let X and Y be compactand let X x Y = {J, Uy, Uy openin X x Y. U, is
the union of sets of the form V' x W, with V" open in X and W open in Y. It follows
that X x Y = [Jsca Vs x Ws with Vs openin X and W openinY’, Vs x Ws C U,.
Letz € X. Now

{z}xY Cc | Vs x Ws.
seA
z€Vs
Since Y is compact, one can find dy,...,6, such that Y = U?:l Ws,. LetV, =
N, Vs,. The sets V, form an open cover of X, thus 3 z1,...,z, such than X =
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Ujsy Ve, Now X xV = J]L, Vi, x Y. ButV,; x Y has a finite cover of (Vs x Ws)’s.
For each Vs x W;, choose U, with Vs x W5 C U, to obtain a finite open cover of
X xY. |

Theorem 2.10. A subset of R™ is compact iff it is closed and bounded.

Proof. Let X C R" be closed and bounded. Then 3 M such that d(x,0) < MV z €
X. In particular, X C [—M, M]™. But [-M, M] is compact, so [—M, M]™ is com-
pact. But X is closed, so X is compact.

Conversely, if X is compact then X is closed, since R™ is Hausdorff. If X is not
bounded, then the sets U,,, = {& € X : d(z,0) < m} form an open cover with no
finite subcover. O

2.3 Consequences of compactness

Theorem 2.11. A continuousreal function on a compact metric space is bounded and
attainsits bounds.

Proof. The image of such a function is compact, and so closed and bounded. Closed
= the function attains its bounds. O

Theorem 2.12. Let X be a compact metric space, let Y be a metric space and let
f: X — Y becontinuous. Then f is uniformly continuous.

Proof. Let ¢ > 0 be arbitrary. We must show 36 > 0V z,y € Xd(z,y) < § =
d(f(z), f(y)) < e. Since f is continuous,Vz € X 34, > 0V y € Xd(z,y) <
20, = d(f(z), f(y)) < €/2.

Now let U, = {y : d(z,y) < 0}. Then the U, form an open cover of X, so
dxy,...,z, suchthat X = J;, U,,. Let § = min d,,.

Let d(y,z) < 4. Since the U,, form a cover we can find 7 such that d(z;,y) < 0,
and d(z;,z) < d;,. By the definition of the U,,, d(f(y), f(z)) < e by the triangle
inequality. O

Lemma 2.13. Let X be a metric space and let K C X be compactand Y C X be
closed. Then3 z € K suchthat d(z,Y) = inf{d(z,w) : z € K,w € Y'}.

Proof. Define f: K — R by f(z) = dist(x,Y). This is continuous, and so attains its
lower bound. g

In particular, if K and Y are disjoint, then d(z,Y") > 0 for every z as Y is closed.
Hence 36 > Osuchthatd(z,Y) >dVz e X.

2.4 Other forms of compactness

Definition 2.14. X is sequentially compact if every sequencein X has a convergent
subsequence.

Bolzano-Weierstrass is the statement that a closed bounded subset of R™ is sequen-
tially compact.

Theorem 2.15. A compact metric space is sequentially compact.
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Proof. Let X be a metric space and let (z,,)$° be a sequence with no convergent sub-
sequence.

Now, claim that V z € X 360 > 0 such that d(z,z,) < ¢ for at most finitely
many n. Otherwise 3 = such that d(x, z,,) < m~! infinitely many times. Now easy to
construct a convergent subsequence.

For each z, pick such a § and let U, = {y : d(z,y) < §}. The U, thus form an
open cover with no finite subcover. O

Theorem 2.16. Let X C R". Then the following are equivalent.
1. X iscompact.
2. X issequentially compact.
3. X isclosed and bounded.

Proof. We know 3 < 1 = 2 from previous theorems. Thus enough to show that
2=3

If X is not closed, 3z ¢ X suchthatV m 3y, € X such that d(y,,z) < n~ .
Then every subsequence of y,, converges in R™ to = and does not converge in X. If X
is not bounded then V n 3 z,, such that d(0, z,,) > n, a sequence with no convergent
subsequence. O



Chapter 3

Connectedness

3.1 Introduction

Definition 3.1. Let X be atopological space. Suppose U, V' C X such that
1. U,V open,
2.UNV =0,
3 X=UUV,
4. both U and V' are non-empty.
Then U, V aresaid to disconnect X. X isconnected if no two subsets disconnect X .

If Y is a subspace of a topological space X, then Y is disconnected in the subspace
topology iff 3 U,V openin X suchthat UNY,VNY #PandY Cc UUV and
Y NUNV = 0. In this case we shall say that U, V disconnect Y.

Proposition 3.2. Let X be atopological space. Then the following are equivalent.
1. X isconnected.
2. Every continuous f: X — Z is constant.
3. The only subsets of X both open and closed are () and X .

Proof. 1 = 2. Suppose 3 non-constant f: X — Z. Then we can find m < n such
that both m and n are in f(X). Then f=*({k : k < m})and f=*({k : k > m})
disconnect X.

2 = 1. Suppose U and V' disconnect X. Then consider

0 z€U
f(z)_{l zeV.
1< 3. NotethatifU Cc X, UU (X \U) = X. O

Proposition 3.3. A continuousimage of a connected space is connected.

Proof. Let f: X — Y be continuous with X a connected topological space. Then if
U and V disconnect f(X), f~'(U) and f=*(V) disconnect X. O

9
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3.2 Connectedness in R

Definition 3.4. A subset I of therealsis an interval if, whenever x < y < 2,2,z €
I=yel

Every interval is of one of these nine forms: [a,b], [a,b), [a,0), (a,b], (a,b),
(a7 OO), (—OO, b)' (—OO, b]! (_007 OO)

To see this note that at the upper end of the interval there are three possibilities -
bounded and achieves bound, bounded and does not achieve bound and unbounded.
Similarly for the lower end of the interval.

Theorem 3.5. A subset of R is connected iff it isan interval.

Proof. If X C R is not an interval we can find z < y < z such that z,z € X and
y ¢ X. Then (—oo,y) and (y, co) disconnect X.

Now let I C R be an interval and suppose U and V' disconnect I. We can find
w € UNIandwv € V NI and without loss of generality take . < v. Since I is an
interval, [u,v] C I. Let s = sup{[u,v]NU}. If s € U then s < v. Since U is open
30 > 0suchthat (s —d,s+6) CU.

IfseVthen(s—6,s+d) CV=>(s—0s+)NU=0. O

Corollary 3.6 (The Intermediate Value Theorem). Leta < band f: [a,b] — R be
continuous. If f(a) < y < f(b) then3 « € [a, b] suchthat f(z) = y.

Proof. If not, f=1((—o0,y)) and f~1((y, 0o)) disconnect [a, b]. O

3.3 Path connectedness

Definition 3.7. Let X be a topological spaceand let z,y € X. A (continuous) path
from z to y isa continuous function ¢: [a, b] — X suchthat ¢(a) = = and ¢(b) = y.

Definition 3.8. X ispath connectedif V 2,y € X,3 apathfromz toy.
Proposition 3.9. Path-connectednessimplies connectedness.

Proof. Suppose X is a topological space and U and V' disconnect X. Letu € U and
v € V. If X is path connected then 3 continuous ¢: [a,b] — X with ¢(a) = u and
#(b) = v. Then ¢~ (U) and ¢~ (V') disconnect [a, b]. O

Definition 3.10. Let X be atopological spaceand ¢: [a,b] — X and ¥ : [¢,d] — X
be continuous paths with ¢(b) = (c). Then the join of ¢ and 1, written ¢ V ¢ is
definedas¢ vV ¢: [a,b+d — ] — X

o(t) a<t<b

¢vw:t’_>{1/1(t+c—b) b<t<bt+d—c

Definition 3.11. The reverse of ¢, written —¢ is the path —¢: [-b, —a] — X with
—¢: t— P(—t).

Let us write x — y if 3 a continuous path in X from x to y. This is an equivalence
relation. Writing = LN y for “¢ is a path from x to y”, we have that :-

1.xi>y:>y_—¢>x
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2. x&y,y&ziz%z

3. the path x: [0,1] — X, x(t) = z satisfies z = z.

Thus — is an equivalence relation. The equivalence classes of — are called path-
components.

Definition 3.12. Let X C R". Then a polygonal pathis a path ¢: [a, b] — X which
ispiecewiselinear, thatis3a = 20 < z; < --- < z,, = bsuchthat ¢((1 — t)z;—1 +
tr;) = (1 — t)p(xi—1) + to(z;) for t € [0,1]and 1 < ¢ < n. X issaid to be
polygonally connected if any two points of X can be joined by polygonal paths.

Write z — y ! for “3 a polygonal path in X from x to y”. It is easy to see that —
is an equivalence relation.

Theorem 3.13. Let X C R™ be open. Then the following are equivalent :-
1. X isconnected,
2. X is path-connected,
3. X ispolygonally connected.

Proof. 3 = 2 istrivial and 2 = 1 has been done before. Thus it suffices to show that
1=3.

Suppose X is connectedand forz € X letU = {y € X : z — y}. Itremains to
show that U is both open and closed in X, thus since X is connected, U = X.

Now, let y € U. Since X is open 3 6 > 0 such that Bs(y) C X. Then for
z € Bs(y),y — z, thus x — z by transitivity and U is open.

Lety € X \ U. Since X is open, 3 6 > 0 such that Bs(y) C X. As before,
z € Bs(y) =y —» z. Ifx - zthenz — y. Thus X \ U isopenand U is closed. O

N.B. Theaboveargument also showsthat if X C R™ isopenthen all path components
of X areopen.

Lemma3.14. Letn > 2 and X C R™ be a compact topological space. Then X ¢ has
only open path-components and precisely one of these is unbounded.

Proof. X¢ is an open subset of R™, so its path components are open. X is bounded
so 3 M such that X C {y : |ly|| < M}. Itis easy to check that {y : ||y|| > M} is
path-connected, so it is contained in an unbounded path-component of X ¢. The other
path-components lie in {y : |ly|| < M} and are therefore bounded. O

INot 100% standard notation.
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Chapter 4

Preliminaries to complex
analysis

4.1 Paths

Definition 4.1. Apath ¢: [a,b] — Cissmoothif the function ¢ is continuously differ-
entiable, with the appropriate one-sided limits at the endpoints a and b. In particular,
¢ and ¢’ are bounded.

Two paths ¢: [a,b] — C and ¢: [¢,d] — C are equivalent if 3 a continuously
differentiable function® v: [a,b] — [c,d] with v'(t) > 0V t € [a,b], y(a) = ¢,
v(b) = dand ¢(t) = (y(t)) Vt € [a,b]. Note I > Osuchthat ¢'(t) > IVt € [a, D]
This is easily shown to be an equivalence relation.

Definition 4.2. If ¢ is a path, ¢: [a,b] — C, the track ¢* of ¢ is defined by ¢* =
{o(t) e C:a <t <b}.

N.B. Equivalent paths have the same track.

Definition 4.3. A path ¢: [a,b] — C s piecewisesmooth ifda=2y <21 <+ <
x, = b such that therestriction of ¢ to [z;_1, z;], ¢>| |s smooth. Equwalently,
¢ is piecewise smoath if it can be written asthe join of f|n|ter many smooth paths.

Two piecewise smooth paths ¢: [a,b] — C and ¢: [¢, d] — C are equivalent if we
canfinda=2p <z1 <---<z,=bandc=1yg <y <--- <y, = dsuch that for
all1 <i<n, ¢>|[x, and 1/1| | are equivalent.

Definition 4.4. Apiecevwsesmooth path ¢: [a,b] — Cisclosed if ¢(a) = ¢(b). Itis
simpleif ¢(z) = ¢(y) = {z,y} C {a, b} orz =y.

4.2 Complex Integration

A function f: [a, b] — Cis said to be Riemann integrable if both its real and imaginary
parts are Riemann integrable. The integral is defined to be

/f t)dt = /% dt+z/ S(f(t))dt.

LIncluding appropriate one-sided limits at the endpoints.

13



14 CHAPTER 4. PRELIMINARIES TO COMPLEX ANALYSIS

J O

Simple Simple, Closed
Closed

Figure 4.1: Examples of paths
Lemma4.5. Let f: [a,b] — C becontinuous. Then

/ab F(t)dt

b
< / ()] dt.

Proof. For suitable 8 € R,

/ab F(t)dt

= et /bf(t)dt = /be“’f(t)dt

= %/be”’f(t)dt = /b%(e“’f(t))dt

b
g/ |f(t)|dt using the real result.

4.3 Domains

Definition 4.6. A domain is a connected open subset of C.
Examples. Some examples of domains are

1. C,

2. A={z:]2| <1},

3. C\ {0},

4. {z:a < |z| < b}.

Definition 4.7. Given z,y € C, let [z — y] be the path ¢: [0,1] — C, ¢(t) =
(I —-t)z +ty.

Definition 4.8. Adomain D isconvexifz,y € D = [z — y]* C D.
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Convex Star-shaped, not convex Neither

Figure 4.2: Examples of domains

Definition 4.9. Adomain D isstar-shapedif 3z € D suchthat [zo — z]* C DV z €
D.

A star-shaped domain is sometimes called a star-domain. Note that every (non-
empty) convex domain is star-shaped.

4.4 Path Integrals

Definition 4.10. Let D beadomain, f: D +— C be continuousand ¢: [a,b] — D be
a smooth path. Then the integral of f along ¢ is defined as

b
/ f(2)dz = / F(6(0)d (H)dt.
¢ a

If ¢ is piecewise smooth, then picka = zg < - -+ < x,, = b such that <1>|[Iv71 2 1S
smooth and then

z)dz = " "(t)dt.
/¢ e =3 / S0 O

Lemma 4.11. Equivalent paths give the same integral.

Proof. Let D beadomainand ¢: [a,b] — D and v¢: [¢,d] — D be equivalent smooth
paths. Let f: D — C be continuous and ~y: [a, b] — [c, d] give the equivalence. Then

d b
/ f(2)dz = / FEb()d (s)ds = / FOGEN () (Bt
P c a

b
- / F6()8 (1)dt = / f(2)d.
a [

If ¢ and «) are piecewise smoothwrite ¢ = ¢1 V---V o and o = 1 V -+ - V o,
with ¢; and 1); smooth, ¢; equivalent to ¢;. Then

/(pf(z)dz:i/d)i f(z)dz:XZ:/wzf(z)dz:/wf(z)dz
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Example. Let D be C \ {0} and f(z) = 2" for somen € Z, ¢: [0,27] — D be

t — e, Then
2m ifn=-1
dz =
/qﬁf(z) ¢ {0 otherwise.

Proof.

2w 2w
/f(z)dz = / e"tetdt = z/ et gy
¢ 0 0

:{[%K:o ifn £ —1

271 ifn=-—1.
O

Definition 4.12. Let D be a domain and ¢: [a,b] — D be a smooth path. Then the
length of ¢, L(¢) is defined as

b
uw=/WWMt

Lemma4.13. Let D beadomain, f: D — C be continuousand ¢: [a,b] — D bea
smooth path. Then
‘/ﬂaw
4]

< sup |f(2)| L(9).
ZEQP*

Proof.

b
/fwwwwm

‘/qb F(2)dz

b
s/wwwmwmm

< sup |f(2)| L(¢) by real result.
zEQ*

Remark. The above generalises easily to piecewise smooth paths.
Henceforth, all paths are piecewise smooth unless otherwise stated.

Proposition 4.14 (Fundamental Theorem of Calculus). Let D be a domain and let
f: D — C be continuous. Suppose f has an antiderivative F' (i.e. a function F'(z)
suchthat F'(z) = f(2) ¥V z € D). Let ¢: [a,b] — D bea path. Then

Aﬂ@k=ﬂMW—Fw@)
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Proof. If ¢ is smooth, then
b b
Af(Z)dz = / flo()e' (t)dt = / (Fo¢) (t)dt = F o ¢(b) — F o ¢(a).

Ingeneralifa = 29 < 21 < --- <z, = band (1>|[Iv71 is smooth, then the above

argument gives that

/(pf(Z)dZ = Z(F(¢($i)) — F(¢(zi-1))) = F(¢(b)) — F(¢(a)).

O

Corollary 4.15. If D isadomain, f: D — C is continuouswith antiderivative F' and
¢ isaclosed path, then

/¢ F(2)dz = 0.

Proof. Immediate. O

Lemma 4.16. Let D be a star-domain and f: D — C be continuous. Then the fol-
lowing are equivalent.

1. f hasanantiderivative F' on D.

2. f¢ f(z)dz = 0 for all closed paths ¢ in D.

3. faT f(2)dz = 0 for the boundary 8T of any triangle T such that T C D 2.

Proof. Itis enoughtodo 3 = 1. Take zo € D suchthat [z — 2z]* C DV z € D and
define

F(z) :/[ . f(w)dw.

Then take T' to be the triangle with vertices zo, z and z + h. Since D is open,
[z = z + h]* C D for |h| sufficiently small which gives that 7" C D. Now

F(z+h)—F(z) = / f(w)dw, so that
[z—z+h]*

[F(z+h) = F(z) = hf(2)| =

/ (Fw) - £())dw
[z—z+h]*
< sup |f(w) = f(2)||h].

wE[z—>z+h]
Choose 6 > Osuchthat |h| < = |f(z+ h) — f(2)| < e. Then

[F(z+h) = F(z) = hf(z)| < €]h].

2Including the boundary and interior.
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Chapter 5

Cauchy’s theorem and its
consequences

5.1 Cauchy’s theorem

Definition 5.1. Let D bea domainand f: D — C be continuous. f is analytic (or
holomorphic)?! if f isdifferentiableat 2 Vz € D.

Theorem 5.2 (Cauchy’s theorem for triangles). Let D be a domain and T be a tri-
anglelyingentirdlyin D. If f: D — C isanalytic, then

f(z)dz =0.
oT

Proof. Letn = | [, f(z)dz|andlet! = L(3T). Now let T, = T'. We can split 7" into
4 equally sized triangles Tt, T2, T3, T* as shown, with all boundaries oriented in the
same direction as that of 7'

ESNVAN

-

Figure 5.1: Splitting up the triangle

Since the contributions from internal edges cancel,

LS MNCTE

and 37 < 4 such that

.
— 4

f(z)dz

oT"

LOutside Cambridge, an analytic function is one which has a power series expansion and a holomorphic
function is C differentiable on a domain.

19
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Put T, = T" for this ¢ and repeat the process. We produce a sequence T, Ty, T, . ..
such that

(z)dz| > in and
or, 4
L(oT,) = L

Since the T, are closed, we can find zo € ﬂ;’il T,. As f is differentiable at zo,
Ve > 0,30 > 0such that

lw — 20| <& = |f(w) = f(20) — (w = 20)f'(20)] < €|w = 20].

Pick n such that 7}, C Bj(z0). Then

f(z)dz

T,

/ (F(2) — f(z0) — (= — 20) f'(z0))d=
oTy,
< LOT.)e sup |z — 20|
2€0T,
< eL(0T,)*.

But ‘faT f(w)dw‘ > 4"l This gives that n < e. But e > 0 is arbitrary, so
n=0. |

Corollary 5.3 (Cauchy’s Theorem for a star-domain). Let D be a star-domain and
f: D~ C beanalytic. Then

/ f(z)dz = 0 for all closed paths ¢ in D.
¢

Proof. Result true for triangles. Thus f has an anti-derivative and thus

/¢ F(z)dz = 0.

5.2 Homotopy

Definition 5.4. Let ¢: [0,1] — D and %: [0,1] — D be piecewise smooth closed
pathsin a domain D. A homotopy from ¢ to ¢ isa function~: [0, 1]? — D such that

1. v iscontinuous,
2. v(0,t) = ¢(t) Yt € ]0,1],
3. v(1,t) =¢(t) Yt €[0,1],

4. Y s € [0,1], the path ~,(t) defined by v5(t) = ~(s,t) is closed and piecewise
smooth.
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Figure 5.2: Two non-homotopic paths.

Figure 5.3: Elementary deformation

Definition 5.5. 1) is said to be an elementary deformationof ¢ if 30 = 29 < 21 <
--- < x, = 1 and convex open subsets C,...,C,, C D suchthatz; | <t <z; =
o(t) € Ci,1h(t) € Ci.

Lemmab5.6. Let D beadomain, f: D — C be analytic, ¢: [0,1] — D bea closed
path and ¢) be an elementary deformation of ¢. Then

/d)f(z)dz:/wf(z)dz.

Proof. Let ¢; and ¢; be the restrictions to [x;—,z;] of ¢ and 1) respectively. Let
vi = [¢(x;) = ¥(x;)]. By Cauchy’s theorem for a star-domain,

/du f(z)dz + /V f(z)dz — /¢ flz)dz — /%_1 F(2)dz = 0.

Now summing from ¢ = 1...n gives that

/d)f(z)dz:/wf(z)dz.
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Proposition 5.7. Let D be a domain and let ¢: [0,1] — D and ¢: [0,1] — D be
homotopic. Then3 ¢ = ¢q, ¢1,..., ¢, = 1 suchthat ¢; isan elementary deformation

of ¢; 1.

Proof. Let~y: [0,1]? = D be a homotopy from ¢ to ¢. [0, 1]? is compact, so ([0, 1]?)
is a compact subset of D. Now C \ D is closed and disjoint from ~([0,1]?) so
Je > 0suchthatV z € v([0,1]?) andw ¢ D, |z —w| > e. Thus V(s,t) € [0,1]?,
B.(v(s,t)) C D. Also, v is uniformly continuous on [0, 1], so 3 6 > 0 such that

(5= )2+t = )2)"" <62 y(s,t) = (s, 1) <.

Now pick n € Nsuchthat 2 < §and let ¢; = v:,i =0,...,n. Letz; = L and

Cij = Bg(f}/(wi,-’ﬁj))- ) . .
Butif =1 <s< Land Lt <t < Lthen

(s—s)+t—t))"* < % <8 = |y(s,t) — v(i/n, j/n)| < € = (s, t) € Cyj.

Thus ¢; is an elementary deformation of ¢; ;. O

Corollary5.8. Let D be a domain, f: D — C be analytic and ¢, 1) be homotopic
closed pathsin D. Then

/d)f(z)dz:/wf(z)dz.

Proof. Immediate from above. O

Definition 5.9. Let D be a domain. A closed path ¢ is contractible if it is homotopic
to a constant path.

Definition 5.10. Adomain D issimply connected if every closed path is contractible.

Corollary 5.11 (Cauchy’s theorem for a simply connected domain).
Let D beadomainand f: D — C be analytic. If the closed path ¢ is contractible,
then

Lf(z)dz =0.

If D issimply connected then

/ f(z)dz = 0 for all closed paths ¢.
¢

Proof. Immediate. |
Notation.

Bu(20) = Blz0,7) = {2 € C: |2 — 2| < 1}
thus B,.(z9) = B(z0,7) = {2z € C: |z — 29| < r}.

C(z0,7) = C,(20) isthepatht — zo + re** for t € [0, 1].
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5.3 Consequences of Cauchy’s Theorem

Theorem 5.12 (Cauchy’s Integral Formula). Let D beadomainandlet f: D — C
be analytic. Let zq, r besuchthat B,.(z9) C D. ThenV z € B,.(z0),

o b Jw)
f(z) /ox -

2m ) W— 2

)

Proof. Take e > 0. Let 6 > 0 be such that Bs(z) C By(z) and |[w—z| = § =
|f(w) — f(2)| < e Then

1 f(w)
‘f(z) - Q—M/CT(ZO) T

since v(s,t) = (1 — s)(z0 + re?™) + s(z + de*™t) is a homotopy from C,.(2o) to
Cs(z) in D \ {z} in which % is analytic. Thus

o L[ Ly,
—‘f() /05( a

C2m HW—2z

2m w—z

1 @ fw),
/C'g(z) d

1 27de
< —
2T 4

But e > 0 is arbitrary, so result follows. O

Remark. Note that the proof of Cauchy’sintegral formula given does not need the full
strength of homotopy invariance, since C5(z) is clearly an elementary deformation of
C,(20)

Theorem 5.13 (Liouville’s Theorem). Every bounded entire function is constant.

Proof. Let f: C — C be analyticand |f(z)] < M V z € C. Take z1,22 € C and let
R > 2max{|z1],]|#2|}. Then
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|f(21) = f(22)

(L Sy,
2m Jopo) \W—21  w— 22
L/ f)z —z)
211 Je(0) (W — 21)(w — 22)

1 27TRM|21 — 2’2|
S mE

T (3)
o aM |Zl — 2’2|
-5

But R can be arbitrarily large, so result follows. O

Theorem 5.14 (The Fundamental Theorem of Algebra). Every non-constant poly-
nomial has at least oneroot in C.

Proof. Let p be a non-constant polynomial and suppose that p has no roots. Then the

function ﬁ is analytic on C. Suppose that

p(2) = anz" + -+ + ag, Witha,, # 0.

Then if

|z| > max{l 2|an_1| ot |a0|}

|an|

V
B
3
Y

3
|
=~

)
3
-
_|_
_|_
=
o
=
Y

3
AN

Ip(2)] >

%
|
£}
3
x

3
Y%

ol < % Now ﬁz) is continuous and B, (0) is
compact, so % is bounded in B, (0). Hence % bounded on all of C and thus constant.

This is a contradiction. O

So 3 M such that |z| > M =

Proposition 5.15. Let g be a continuous function from{z € C : |z — z9| = r} to C.
Then

isanalytic on B,.(z¢) and

) = CIE

Proof. Let2e = r — |z — zg| such that jw — zo| = r = |w — 2| > 2e. Now
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< 1 1 )”1 1

w—z—h w-z Lzo(w—z—h)k(w—z)n_l_k

B h = 1
(w_z_h)(w_z)kzo(w—z—h)k(w—z)”flfk

< hn

—€n+1

— 0 as |h| — 0 independently of w.

When |h| <€,

‘f(z+h)—f(z)—hn/ %dw -

Cr(z0) (W — 2

1 n—1 1
/CT(ZU) o) ((w —z—h)(w-=2) kz:% (w—z—h)" (w— z)n1k> dw

Using the same estimate as above, the bit in brackets converges to 0 as h — 0.
Since g(w) is bounded on C,(zo)* for |h| sufficiently small the whole integral is at
most € |h. O

Corollary 5.16. Let D beadomainand f: D — C be analytic. Then f isinfinitely
differentiableinside B,-(z0), B, (z0) C D andV z € B,.(2),

n ! f(w)
1) = o= " (w—Z)”“ dw.

Proof. The case n = 0 is Cauchy’s integral formula. If we have it for n, then the
proposition gives it for n + 1. O

Theorem 5.17 (Morera’s Theorem). Let D be a star-shaped domain and
f: D~ C becontinuous. If

/ f(z)dz=0
oT
for all trianglesT" C D then f isanalytic.

Proof. The condition implies that f has an antiderivative F', which is analytic. F'is
therefore infinitely differentiable, so f is analytic. O

Remark. Now let D be an arbitrary domainandlet z € D. Snce 3 ¢ > 0 such that
B.(z) C D and B(z) is star-shaped, one can easily extend Morera’s Theorem to any
domain.
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Chapter 6

Power Series

6.1 Analyticity and Holomorphy

Lemma 6.1. Consider a power series > > an(z — 2zo)". If this sum converges for
some z with |z — zg| = p, then it converges for all w with |w — 29| < p and for any
r < p, the convergenceis uniformin B, (zo).

Proof. Since Y7 a,(z — z0)™ converges, then 3 M such that |a,||z — 20|" =
lan| p™ < M Y n. If |lw — 20| < p, then

00 00 _
Za"( _ZOnSMZ‘w Zo
n=N n=N

IA

()

()

— 0 independently of w.

|
Definition 6.2. Theradius of convergence of a power series Y~  a,(z — z0)™ is
o0
R = sup{r: 3z suchthat |z — z9| < r and Z an(z — zp)" converges.}.

n=0

Lemma6.3. Let D beadomain, ¢: [a,b] — D beapathand f,,: D — C be contin-
uous. Suppose f, — f uniformly on ¢*. Then

/¢fn(z)dz—>/¢f(z)dz

Proof. Lete > 0. Then3 N suchthatVn > NV z € ¢*, |fu(z) — f(2)] < =

L(¢)"
Then
n(z)dz — dz| =
Mf(Z)z /(ﬁf(z')z

27

— fdz
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But e > 0 is arbitrary, so result follows. O

Lemma6.4. Let f(z) = > 7 an(z—20)" and g(z) = 3" by (z — 20)™. Suppose
there exists a sequence (2x)32; — 20, 2k # 20 and f(z) = g(zx). Thena,, = b, for
all n.

Proof. Suppose otherwise. Then let NV be minimal such that ay # bx. Now let
cp = @y — by,. Then

f(2)=9(z) =Y ealz —20)"

n=N
(oo}
=(z—z)" (cN + (2 — 20) Z cn(z — zo)”_N_1> .
n=N-+1
For |zo — 2| sufficiently small, then
= 1
|2k — 20| Z ez —20)" V7Y < 3 len]
n=N+1
and thus f(zy) — g(zx) # 0. O

Lemma6.5. Let f(z) = >~ an(z — 20)™ With radius of convergence R. Then f is
analyticin Br(zo) and f'(z) = Y.~ na,(z — z0)" "

Proof. Let z € Br(z). Pickr such that |z — zp| < r < R. Let

N
fn(z) = Z an(z — 2z0)".

Then fx — f uniformly on B, (zp). Since |w — zp| =1 = |w — 2| > 1 — |z — 20,
we have

fx(w) | fw) o fxw) | fw)

iformly f —zol =T
s " w— (w_z)zé(w_z)zunlormy or lw—zo|=r
But
1 1
In(z) = —/ @) g, L 7 4.
2m Jo,(z) W— 2 2m Jo, () W — 2
Therefore

_ 1 f(w)
flz)= Py /07-(20) p— zdw.

Hence f is differentiable at z and

(o) = 1 _fw)
F'(z) = 2m /CT(ZO) (w — z)2dw'
Also,

/ _ 1 fN(w) 1 f(w) g
In(z) = 2m /CT(Z[)) (w— Z)zdw - o /CT(Z[)) (w— Z)zdw = f'(2).

Hence f'(z) = Y-, na,(z — z0)™ as claimed. O
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Theorem 6.6 (Taylor’s Theorem). Let D be a domain and then f: D — C be an-
alytic. Let zo € D and let R be such that Br(zp) C D. Then there exist unique
coefficients (a,, )52, such that

fiz) = Zan(z —20)" V z € Br(z0).

n=0

Proof. Let z € Br(zo) and let r be such that |z — z9| < r < R. Then by Cauchy’s

integral formula,
=g [
Cr(z0)

2m w—z

_ 1 f(w) w
C2m /Cr(zo) (w—20) — (2 — Zo)d
1 f(w)

% CT(ZO)’LU—Z()]_—;

1
1 o0 _ n
:—/ f(w) Z(Z ZO) dw.
2m Cr(zo) W — 20 = \W — 2o

0

£=20 | < 1, the convergence is uniform, so can exchange the sum and integral to

w—=zo

As
get

= (z—2)" f(w)
fz) = Z 27r20 /C’T(zo) (w )n"_1 dw.

n=0 — %0

To get uniqueness use above lemma. O

Theorem 6.7 (Identity Theorem). Let D beadomainand f,g: D — C beanalytic.
upposez, — zo(€ D), zi # zo and f(zx) = g(zi) foral k. Then f(z) = g(2)Vz €
D. In particular, setting g = 0 gives that the zeros of a non-constant analytic function
are isolated.

Proof. Define U = {z € D : f((z) = g (z) Vn}. Now U # 0 since z; € U as
the earlier result on uniqueness of power series implies that the Taylor expansions of f
and g at z, are the same.

Now U is closed, since

v= ) (7 =) (o).
n=0

If z € U, then the Taylor expansions of f and g agree at z, S0 f = g in some B;(z)
and then for y € Bs(2), f and g must have the same n!" derivatives at y. Thus U is
open and since D is connected, U = D. O

Proposition 6.8. Let D be a domain, zo € D and f: D — C be analytic such that
f # 0. Then there exist a unique k¥ > 0 and a unique analytic function g such that

9(z0) # 0and f(z) = (z — 20)"g(2).
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Proof. Let the Taylor expansion of f at zo be >~  an(z — 29)". Now choose N
minimal such that ay # 0. (This is do-able since f # 0.) Thus we can write

f(z)=(z—20)" Z antn(z — 20)"
n=0
in some Bj(zp). Set
Y anen(z —z0)" if |z — 2| <6
9(z) = {(z - 2’0)7Nf(2) if 2 £ 2.

These two cases agree when 0 < |z — zo| < 6 and f(2) = (z — 20)V g(2), g(z0) =
ay # 0. Now if f(2) = (2 — 20)¥191(2) = (2 — 20)"292(2) V z € D, take k; < ks
without loss of generality. Then for z # zo we have

91(2) = (z = 20)* 1 ga(2).

Thus if k1 < ko, g1 = 0a8sz — zp and s0 g(zp) = 0. Thus g1(z) = g2(2) if 2 # 2o
and hence g; = ¢-. O

Theorem 6.9 (Riemann’s Removable Singularity Theorem). Consider adomain D
with zo € D. Let f: D\ {20} — C beanalytic. Then if f is bounded near z, (i.e.
36 > 0, M suchthat z € Bs(z0) = |f(2)| < M), f = aasz — z, and the function

o= {2

isanalytic.

Proof. Define h: D — C by

This is differentiable at z # 2o, and also

‘h(Z) — h(zo)
z— 2o

< M |z — 2| when |z — zo| < §.

Hence & is analytic and so has Taylor series Y~ | a,, (z—20)". Now h(zq) = h'(20) =
0, so if we define g(z) = 07, ant2(z — 20)", then g(z) = f(z) for z # 2. Hence
g(z) > aasz — 20,50 f(z) = aasz — zo. O

Proposition 6.10. Let D be a domain, zp € D and f: D \ {2} — C be analytic.
Suppose | f(z)| — oo asz — zg. Then there are a uniqueinteger k£ > 1 and unique
analytic function g: D ~ C such that g(2) # 0 and f(2) = (2 — z0) *g(2) when
z # 2.

Proof. Since |f(z)| = oo asz — 2. Thenwe can find § > 0 suchthat z € Bs(z0) =
£(2)] > 1. Let

1
h(z):{m 0<|Z—Zo|<6
0 Z = 2.
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As ﬁ — 0as z — z, h is analytic in Bs(z). Then 3 k and I: Bs(z) — C
such that [ is analytic and h(z) = (z — 20)*1(2) if 2 € Bs(20), [(z0) # 0. Since [ is

continuous, we can find 0 < ¢; < § suchthatl(z) # 0 if z € Bs, (20). Now let

A 0< |z— 20| <6y
_)m
o) {<z ~ ) f(z) 2# 7.

The definitions agree and g has the required properties. Uniqueness follows as before.
([l

6.2 Classification of Isolated Singularities

Definition 6.11. Let D beadomain, zo € Dand f: D \ {29} — C beanalytic. Then
zg isasingularity of f.

e If f is bounded in a neighbourhood of z, the singularity is called removable
as we can define an analytic function g: D — C such that f and g agree on

D\ {z0}-

e If |f(2)] = o0 asz — zp and if k is the integer from previous proposition the
singularity is a pole of order k.

o All other singularities are called essential.

Theorem 6.12 (Casorati-Weierstrass Theorem). Let D be a domain, zo € D and
f: D\ {20} — C be analytic with an essential singularity at zo. Then for every
w € C, Az, — 2o suchthat f(z,,) = w.

Proof. Suppose otherwise. Then we can find w € C suchthat0 < |z — zo| < § =
|f(z) —w| > e. Then g(z) = 1/(f(z) — w) is analytic and bounded in {z : 0 <
|z — 20| < ¢}. Then g has a removable singularity at zo (in Bs(z0)), so we can find an
analytic function h: B;s(zp) — C such that h(z) = g(z) when z # z. Thus, when
z # 20, f(z) =w+ ﬁ and so f has either a pole or removable singularity at zo. [

Theorem 6.13 (Laurent’s Theorem). ! Let D be the (non-empty) domain {z : a <
|z — 20| < b} andlet f: D — C be analytic. Then there exist unique coefficients
(an)nez such that

(o)

f(z) = Z an(z —20)"Vz € D.

n=—oo

Proof. Pick r and p suchthat a < r < |z — z0| < p < b. Let y be the straight line
path from 2z + r to 2o + p. 2 It is not hard to see that the closed path Cy(z0) V =7 V-
C,(z0) V ry is homotopic in D \ {z} to a path of the form C;5(z). Hence (by Cauchy’s
Integral Formula and homotopy invariance)

_ 1 flw) 1 f(w)
1(z) = 271 /C’p(zo) w— zdw 2m /Cr(~ )y w— zdw'

<0

IThis is not strictly in the schedules, but is covered in Complex Methods. The proof that follows is
slightly sketchy.
2Unless this goes through z, in which case take a small detour about z. | told you it was sketchy.
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Just as in the proof of Taylor’s theorem, expand in binomial series to get

1 W) % "
% /CP(ZO) w — Zdw = nz:%an(z ZO)

1
0 = - / A C)
211 J e, (20 (w — zg)t!

and

1 fw) o f(w) w
Je a1 d

Com ) W— 2 211 Jo, (z0) 2 — 20 — (W — 20)

as before,

-1

= Z an(z — z0)"

1 f(w)

= e
a o /CT(ZO) (w — 20)" 1 w

or, using homotopy invariance

1
0 = - / N AC) R
211 J e, (20 (w — zg)t!

For uniqueness, note that

L/ de: i a_”/ (’LU—Z )n—k—ldw
2m Je, (2) (w — zp)k+1 L 2m o, () 0

= ag.

O

Let D be a domain, zo € D, f: D\ {#} — C be analytic. Pick R such that
Br(z0) C D. Then f has a Laurent expansion f(z) = > 2 _ an(z — 20)" in
{z:0 < |z — 20| < R}. Letk = inf{n : a, # 0}. Thenif £ > 0, f has a removable
singularity at zo and if k& is finite but negative, f has a pole of order —k at zo. If k is
not finite, then f has an essential singularity at zo. The converse is also clear.

Theorem 6.14 (Maximum Modulus Theorem). Let D beadomainand f: D — C
be analytic. Suppose | f| hasalocal maximum. Then f is constant.

Proof. Suppose zp € D and ¢ are such that | f(zo)| > |f(z)| whenever z € Bjs(zo).
Then Cauchy’s integral formula implies

20 —L Mdz.
fGo) =5 | .

27 Z— 2
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Now pick 6 such that | f(z0)| = e* f(20).

20
L 0 Ly e,
2m CE(ZO)Z—ZO C

2m 5(z0) zZ—Zp
1 2w elef(Zo + (56”’15)

= Z ST T 5et?
2m J, der? 10e’dg
1 27T

S R (e (20 + 6e'?)) dg
27T 0
1 27

< — e f(z0 + 6e'?)| dop
27T 0

< |f(z0)l-

But we know that equality occurs, so e f(z0) = e’ f(zo + de*?) Vo (using a
result of real analysis). So there exist non-isolated z where f(z) = f(zo), hence f is
constant. O
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Chapter 7

Winding Numbers

7.1 Introduction and Definition

Definition 7.1. Let z € C\ {0}. A value of log z is a complex number w such that
eV =z Ifw=a+wisavalueoflogz, thena = log|z|. Itisclear that a + b isa
valueof log z iff a + 2(b + 2nx) isavalueof log z V n € Z.

Definition 7.2. Let z € C\ {0}. Avalue of arg z is a real number 6 such that z =
|z| . § isavalue of arg z iff @ + 2nw isavalueof arg z Vn € Ziff log|z| + 10 isa
value of log z.

log z i log |z| + 10

suchthat —7 < 6 <
arg z 0

Definition 7.3. The principal value of

.

Definition 7.4. Let D beadomainsuchthat 0 ¢ D. A continuous branch of log 2

isa continuousfunction f: D — C suchthat f(z) isa value of ;(;iz VY z € D. This
need not exist (for instanceif D = C \ {0}).
Before doing anything with this, a lemma is useful.

Lemma 7.5. Let D be a simply connected domain and f: D — C be analytic. Then
f hasan antiderivative.

Proof. Take zo € D (D tacitly assumed to be non-empty) and define F' by setting
F(z)= / f(w)dw, where ¢ is some path from zy to z.
¢

By Cauchy’s Theorem, this is well-defined and the proof that F' is an antiderivative
of f is more or less identical to the proof that faT f(w)dw = 0 for all triangles T
implies that f has an antiderivative in a star-shaped domain. O

Lemma 7.6. Let D be a simply connected domain not containing 0. Let zo bein D
and wq be a value of log zo. Then there is a unique continuous branch L of log on D
such that L(zp) = wy.

35
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Proof. f(z) = 1 is analytic on D so by above lemma has an antiderivative L. By
adding a suitable constant we may assume that L(zo) = wo. Now consider g(z) =
ze L(2), g'(2) = e L) (1 —2L/(2)) = 00 g is constanton D. Now g(zp) = 1,50 L
is a continuous (and even analytic) branch of log z. If L, is another continuous branch,
then L;L(‘) is an integer for all z € D. But L, and L are continuous, so this must
be constantand as L(zp) = L1(20), L = L1. O

Definition 7.7. Let D bea simply connected domain, take z, € C \ D and consider a
path ¢: [a,b] — D. The change (or variation) in log(z — zo)is defined as L(¢(b)) —
L(¢(a)) where L is any continuous branch of log(z — zp) on D. Note that thisis well
defined, and from the way that L was produced, is also equal to

/ dz
62— 20

Now let D be any domain, zo € D and ¢: [a,b] — D be a path such that zo ¢ ¢*.
Since ¢* is compactand (C\ D) U{zo } is closed, there exists e > 0 such that B(z) C

D and zy ¢ B.(z) forall z € ¢*.
Also ¢ is uniformly continuous, so 3 n € N such that

1
2=yl < — = [6(x) — 6()] <.
Now let z; = a + %(b —a)fori =0,1,...,n and let ¢; be the restriction of ¢ to
[zi—1,2i] and C; = Be(é(x;)). Then ¢; C C;.

Definition 7.8. The change in log(z — zo) along ¢ is defined to be the sum of the
changesin log for each of the ¢;. Thisisnot circular —the C;’s are manifestly simply
connected and do not contain zo. Thus the changein log is also equal to

/ dz
62— 20

When we chose continuous branches L; of log(z — z¢) in each C;, we could, by
adding suitable constants, ensure that L;(¢(z;)) = L;y1(¢(x;)). If we do that, then
the change along ¢ is

n

Z Li(¢(z)) — Li(¢p(zi—1)) = Ln(¢(b)) — L1(¢(a))

=1
If ¢ is closed, this must be 27k for some k € Z.

Definition 7.9. Thewinding number of a closed path ¢ about z, is defined asthis k. It
isdenoted as w(¢, zo) and is equal to

1 dz

2m Jy 2 — 20

From the above formula, we see that for zo ¢ ¢*, w(¢, o) is an analytic function
of zy with derivative

1 dz

2m1 Jy (2 — 20)%"
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It is therefore continuous, and as it only takes integer values must be constant on
components of C \ ¢*. Since ¢* is compact, there is a unique unbounded component
of C \ ¢* where the winding number is zero.

To see this, let |z9| > 2max{|z| : z € ¢*}. Then

/ dz < L(¢)
® zZ—Zp

= 7|zl

1

w(¢7Z0) = %

— 0as |zg| = 0.

7.2 Residues

Let D be a domain and f be a function analytic on D except at finitely many points
21,---,2E. Given z € D, we can find § > 0 such that Bs(z) contains none of the
z; unless z = z;, in which case Bs(z) N {z1,...,2,} = {2} Inside Bs(z), f has a
Laurent expansion

oo

fw)= Y anlw—2)"

Definition 7.10. Theresidueof f at z isdefined asa_; and iswritten Res(f, z).

If 2 ¢ {#1,..., 2}, then Res(f, z) = 0. Now, at z;, write

o= 3 a9 =)
Then
1
Res(f,2) = 5 /C L fe

This gives an alternative definition of Res(f, z;) not involving Laurent expansions.

Definition 7.11. The principal part of f at z; is defined to be the function

—1
gi(z) = Z ag)(z —z)".

gisanalyticon D \ {z;} and f — g; hasaremovable singularity at z;.

Theorem 7.12 (Cauchy’s Residue Theorem). Let D be a simply connected domain
and f and z1,...,2; be as above. Let ¢ be a closed path in D such that ¢* N
{z1,...,2} = 0. Then

1
/d)f(z)dz = 27rzZRes(f, z)w(o, z;).
j=1

Proof. f — (g1 + --- + gx)* is analytic on D except for removable singularities at
Z1,---,2k Let h: D — C be analytic such that h(z) = f(z) — (g1(2) + -+ +

1The g;’s are the relevant principal parts.
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gx(2)) Vz € D\ {z1,...,z,}. Then by Cauchy’s theorem,

/h( )dz =0 and hence

/f M—Z/%

—QWZZRQS frziw(e, z;).

j=1
|

Definition 7.13. Let D be a domain, zo € D and let f be a function analytic when
0 < |z— 2| < € for somee > 0. Recall that if f has a removable singularity or
poleat zo we canwrite f(z) = (z — z0)*g(z) where k and g are uniquely determined,
g9(z0) # 0 and g analytic. Then the integer & is called the order of f at zp and is
written ord(f, zo).

Theorem 7.14. Let D beadomainand let f: D — C be analytic except at finitely
many poles. Suppose also that f has finitely many zeros in D, and let the zeros and
polesbez,...,z;. Let ¢ beaclosed pathin D suchthat ¢* N{z1,...,2;} = 0. Then

EENENC)
2m Jy f(2)

%
dz = Z ord(f, zj)w(g, z;).
j=1

Proof. By the residue theorem

(2) Z Res w(e, z;).

2m (2)
Near z;, f = (2 — z;)"g(2) with g(2;) # 0 and r = ord(f, z;). Then

) v g
o) " =% e

and Res(fT', zj) = ord(f, z;). Summing over j gives the result. O

Notation. Write ZP(f, ¢) for 5& [, f(<2))dz

N.B.

f'(2) 1 dz
2 o f(2) dz = 2m fo Z

w(f 0 ¢,0).

Theorem 7.15 (Rouché’s Theorem). Let D beadomain, ¢ beaclosed pathin D and
f and g be functionswith the following properties:

1. f and g are analytic on D except for finitely many poles, none of which lie on
0.

2. fand f + g havefinitely many zeros, none of which lie on ¢*.
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3. lg(2)| <[f(2)| V2 € ¢"
Then ZP(f + g,¢) = ZP(f,¢).

Proof. It follows from the definition of order at a point that ord(f +g, z) = ord(f, z)+
ord(%,z). Hence, putting h(z) = 1 + 42 we have ZP(f + g,¢) = ZP(f, ) +

f(z)’
ZP(h,$). But ZP(h,$) = w(ho é,0), and for z € ¢*, Rh(z) > 1 — ‘% > 0. But
there is a continuous branch of log on the right half-plane, so w(h o ¢,0) = 0. O

Theorem 7.16 (Local Mapping Theorem). Let D beadomain,zo € Dand f: D +»
C be analytic and non-constant. Then for ¢ > 0 sufficiently small, there exists § > 0
such that whenever 0 < |w —wg| < 6, there are exactly k values of z such that
0 < |z — 2| <eand f(z) = w, wherek = ord(f — wo, 20).

Proof. Choose € > 0 small enough such that whenever 0 < |z — zp| < 2e,
1. f(z) # wo,
2. f'(z) #0,
3. z€D.

Note that 1 and 2 are possible by the Identity Theorem. Now C.(z)* is compact,
soputd = inf{|f(z) —wo| : 2 € Cc(20)*} > 0.
ThenV z € Cc(z0)*, |lw — wp| < | f(2) — wo|. Hence by Rouché’s Theorem,

k = number of zeros up to multiplicity of f(z) — wo in B.(z0)
= number of zeros of f(z) —wo (= f(z) —wo — (w — wp))-

But every zero of f(z) — w is simple, since f’ # 0. O

Corollary 7.17 (Open Mapping Theorem). Let D be a domainand f: D — C be
analytic and non-constant. Thenif U C D isopen, f(U) is open.

Proof. Letwy € f(U) and zo be such that f(z9) = wo. The Local Mapping Theorem
provides ¢ > 0 such that Bs(wo) C f(B(20)) C f(U). Hence f(U) is open. O

Remark. The Maximum Modulus Theorem follows immediately.
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Chapter 8

Cauchy’s Theorem (homology
version)

Let D be the domain and ¢ the path shown. It can be shown by methods of algebraic
topology that ¢ is not contractible in D. However, it is also clear that [, f(z)dz = 0
for all analytic functions f on D. We shall ask which paths have this property. This
section of the course is starred.

A chain in a domain D is a finite sequence (¢1,...,¢n) of paths. Two chains
(¢1,--.,0n) and (¢1,...,9N) are directly equivalent if there is a permutation 7
of the set {1,2,..., N} such that ¢»; = ¢,(; for every 4. A subdivision of a chain
(¢1,...,6n) isachain

(11, P12s -y D10ay s P21s ey P2Mny - v o BN+ -+ ON My )

such that ¢; = ¢ V ¢ia V -+ - V @i, TOr every 4. Two chains are equivalent if they
have directly equivalent subdivisions.

41
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A cycle is a chain (¢1, ..., ¢n) such that each ¢; is a closed path'. Two cycles
(¢1,...,6n) and (¢¥y,...,¢N) are homotopic if ¢; is homotopic ¢; for every i. Two
cycles® = (¢y,...,¢n)and ¥ = (¢4, ...,1y) are homologousiif there is a sequence
b =y, &y,..., P = U such that for every ¢, ®;_; and ®; are either equivalent or
homotopic.

If® = (¢1,...,¢n) isachain inadomain D and f: D +— C is continuous, then
J f(2)dz is defined to be DO f@ f(z)dz. If @ is also a cycle, and zp € C\ ®*,
then the winding number of ® about z is defined to be

N

W@z = 3 w(biz) = g [ -

_ 21 Jo 2 — 20
i=1

Theorem 8.1. Let D beadomainand ® be a cycle homologousin D to a point. Then
J f(2)dz = 0 for every analytic function f: D — C.

Proof. Trivial consequence of homotopy invariance. O

This certainly deals with the path shown above. The converse of this theorem is also
true, but somewhat harder to prove. The main result of this section is a characterization
in terms of winding numbers of those cycles for which the integral of any analytic
function vanishes.

Theorem 8.2. Let D be a domain and let ® be a cycle in D with w(®,zy) = 0 for
every complex number zo ¢ D. Then [, f(z)dz = 0 for every analytic function
f:D~—C.

The converse of this theorem is obvious, using the function f(z) = (z — z9)~%. In
order to prove this theorem we need another set of definitions from algebraic topology
and 3 easy lemmas.

Given a real number 6 > 0, we define X(d) to be the set of all squares S C C of
the form

{zeC:md <Rz< (Mm+1)5,n6 <Fz< (n+1)d}

where m and n are integers. Given such a square S, we denote by .S the boundary
of S, oriented anticlockwise. A square complex of mesh ¢ is a subset ¥ C X(d). If
¥ ={Si,...,Sn} isasquare complex, then an edge of one of the S; is called internal
if it is shared by some other .S;, and is otherwise called external. The boundary 9%
of X is defined to be the chain of all external edges of X (with their directions coming
from the orientations of the relevant 95;). We write X* for the union of the squares
that make up X (so that ©* c Cand X C P[C]).

Lemma 8.3. Let X be a square complex. Then 9% is equivalent to a cycle.

Proof. We can form a directed graph, where the vertices are all points of the form
d(m + n1) and the edges are the external edges of ¥ (with their directions). It does not
take long to check that at any vertex the number of edges going in equals the number
of edges coming out. Now start at a vertex v which has at least one vertex which has
at least one edge coming out of it, and move along edges in the forward direction for
as long as possible without repeating an edge. As there are finitely many edges this
process must stop, and because of the condition just mentioned must stop at v. The
result is a closed path. If we remove this path, we obtain a directed graph with fewer
edges satisfying the same condition, so by induction the result is proved. O

L1t is more usual to define a cycle to be a chain equivalent to what I have called a cycle.
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Lemma8.4. Let ¥ = {Si,...,Sn} be a square complex and let D be a domain
containing~*. Let f: D — C becontlnuous Then [, f(2)dz = SN | Jos, F(2)dz

Proof. The contributions to the right-hand side from integrals along internal edges can-
cel, leaving only the integrals along external edges, which by definition is the left-hand

side. O
Lemma8.5. Let ¥ = {S1,...,Sn} beasquare complex and let zo e int(Z ) Let f
be a function analytic onadomamthatmcludesE* Then f(zg) = m oy oo Z) dz.

Proof. Firstly, suppose zo Iies in the interior of S; for some i. When j # 4, Cauchy’s
theorem implies that fas Z) dz. Also, 9S; is homotoplcto Cs(zo) for some § > 0,

zZ—

so by Cauchy’s integral formula f(zo) = Zm 08 im Z) dz. The result then follows
from above lemma.
Now if zg lies on an internal edge the result follows by continuity. O

Proof of theorem. Let X C Dbe C\ {z : w(®,z) =0} = {z : w(®P,z) # 0} U &*,
Since w(®, z) is continuous on the open set C \ ®*, we see that {z : w(®, z) = 0} is
open, so that X is closed. Also, since w(®,z) = 0 on the unbounded component of
C\ ®*, X is bounded. Thus X is compact, from which it follows that we can choose
0 > 0 such that B2s(z) C D whenever z € X.

Define a square complex X of mesh ¢ by taking every square S € X(§) such that
SN C # ). Note that S is included even if S intersects X only on the boundary - this
is important. It is clear that X C X*, but we also have X C int X* as the definition of
¥ does not allow z € X to be on an external edge. Also, by our choice of §, we have
¥ CD.

Hence, if z € ®* C X, above lemma gives that f(z) = - W) ~dw. Itfollows

271 JOY w—
that
Lf(z) 2m/ 5Ew—z
1 d
= [ s [ S dw
ox 2m Jp w— 2

=— fw)w(®,w)dw.
ox.

dd

The above change of integrals will not be justified, but we are talking about con-
tinuous functions on closed, bounded subsets of R, where the justification is relatively
easy. Now since X N9X = (), we have w(®,w) = 0 for every w € 9%. This completes
the proof. O
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