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Abstract

A system of partial differential equations describing the thermal behavior of aluminium cell coupled with magnetohy-
drodynamic effects is numerically solved. The thermal model is considered as a two-phases Stefan problem which consists
of a non-linear convection–diffusion heat equation with Joule effect as a source. The magnetohydrodynamic fields are gov-
erned by Navier–Stokes and by static Maxwell equations. A pseudo-evolutionary scheme (Chernoff) is used to obtain the
stationary solution giving the temperature and the frozen layer profile for the simulation of the ledges in the cell. A numer-
ical approximation using a finite element method is formulated to obtain the fluid velocity, electrical potential, magnetic
induction and temperature. An iterative algorithm and 3-D numerical results are presented.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A phase changing problem motivated by the modelling of thermal problem coupled with magnetohydro-
dynamic effects in a reduction cell is studied. In a smelting cell operating with Hall–Héroult process, the metal
part is produced by the electrolysis of aluminium oxide dissolved in a bath based on molten cryolite [1]. Var-
ious phenomena take place in such a cell for which a transverse section is schematically pictured in Fig. 1.

Running from the anodes through liquid aluminium and collector bars, the steady electric current spreads
in the electrolytic bath. The important magnetic field generated by the currents carried to the alignment of
cells, coupled with the currents running through the cells themselves gives rise to a field of Laplace forces
which maintains a motion within these two conducting liquids. A magnetohydrodynamic interaction takes
place in the cell. In the other hand a heating source is produced by the Joule effect due to the electric resistivity
of the bath.
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Fig. 1. Transverse cross section of aluminium reduction cell.
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On the wall of the cell, a solidified bath layer, the so-called ledge is created. These ledges protect the cell
sidewall from corrosive electrolytic bath and reduce the heat loss from the cell (see [2] page 23). Moreover,
its profile strongly influences the magnetohydrodynamic stability causing oscillations of the aluminium–bath
interface which could decrease the current efficiency. Consequently an optimal ledge profile is one of the objec-
tives of cell sidewall design.

The thermal solidification problem in smelting cell has been treated by several authors [3–5]. As far as we
are aware, this problem has never been considered when coupled with the magnetohydrodynamic fields. The
aim of this paper is to deal with such fields interaction. Let us mention that the details on this problem can be
found in Safa’s thesis [6].

Mathematically, the problem is to solve a coupled system of partial differential equations consisting of the
heat equation with Joule effect as a source, Maxwell law equations with electrical conductivity as a function of
temperature and Navier–Stokes equations. The interface between aluminium and bath is an unknown. The
ledge is considered as electrical insulator, the thermal model is a stationary two-phases Stefan problem.
The outline of this paper is as follow: in Section 2 we introduce the physical model, the algorithm is presented
in Section 3 and we give the numerical results in Section 4.
2. The model

In order to introduce the model we first describe some geometrical and physical quantities.
2.1. General descriptions

The geometry is schematically defined by Fig. 1. We introduce the following notations:

� X ¼ X1 [ X2: fluids and solid ledge,
� N ¼ N1 [ N2: electrodes,
� K ¼ X [ N: domain representing the cell

and we define the interfaces:

� C ¼ oX1 \ oX2: free interface between aluminium and bath, which is an unknown,
� Ri ¼ oK \ oNi; i ¼ 1; 2,
� R ¼ R1 [ R2: outer boundary of the electrodes.
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The unknown physical fields with which we shall deal are listed as follows:
Hydrodynamic fields:

� u: velocity field in Xi; i ¼ 1; 2; (u ¼ 0 in solid ledges),
� p: pressure.

Electromagnetic fields:

� b: magnetic induction field,
� e: electric field,
� j: electric current density.

Thermal fields:

� H: enthalpy,
� h: temperature.

The material properties are defined as

� q: mass density,
� rb and r: electrical conductivity in and, respectively, outside the bath,
� g: viscosity of the fluids,
� l0: magnetic permeability of the void,
� k: thermal conductivity,
� Cp: specific heat,
� ‘: latent heat.
2.2. Physical assumptions

The model leans on the following basic hypotheses:

1. The fluids are immiscible, incompressible and Newtonian.
2. In each domain Xi, i = 1, 2, the fluids are governed by the stationary Navier–Stokes equations.
3. The electromagnetic fields satisfy the stationary Maxwell’s equations, Ohm’s law is moreover supposed to

be valid in all the cell K.
4. The electrical current density outside the cell is given (current in the collector bars).
5. The electrical conductivity r is function of temperature h in the fluids and electrodes parts.
6. The viscosity g, the density q and the specific heat Cp are temperature independent.
7. The volumes of the domains X1 and X2 have given values (mass conservation).
8. The only heat source is produced by the Joule effect due to the current crossing the cell.
9. Effects of chemical reactions [7], Marangoni effect [8,9], surface tension as well as the presence of gas flow

are neglected.

2.3. The hydrodynamic problem

In this part we consider the temperature field h and the electromagnetic fields j and b as known. We choose
to represent the unknown interface between aluminium and bath by a parametrization of the form
Cð�hÞ ¼ ½ðx; y; zÞ : z ¼ �hðx; yÞ; ðx; yÞ 2 D�, where D is usually a rectangle corresponding to the parametrization
of aluminium–cathode interface. We denote the dependence of X1;X2 and C with respect to �h by using
Xi ¼ Xið�hÞ; i ¼ 1; 2; C ¼ Cð�hÞ:
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From assumption (vii) we get the following relation:
Z
D

�hðx; yÞdxdy ¼ V 1; where V 1 is the volume of aluminium:
The unit normal to Cð�hÞ pointing into X2ð�hÞ is given by
n ¼ 1

krðz� �hÞk
rðz� �hÞ:
We consider the following standard set of equations for hydrodynamic fields:
qðu;rÞu� divð2lDðuÞ � ðp þ qgzÞIÞ ¼ j ^ b in X1ð�hÞ [ X2ð�hÞ; ð1Þ
divu ¼ 0 in X1ð�hÞ [ X2ð�hÞ; ð2Þ
ðu;rðz� �hÞÞ ¼ 0 on Cð�hÞ; ð3Þ
with
DðuÞ ¼ 1

2
ðruþ ðruÞTÞ; I ¼ ðdijÞ i; j ¼ 1; 2; 3:
Here (.,.) is the usual scalar product on R3. Eqs. (1)–(3) correspond to 1st and 2nd assumptions. We complete
those equations by introducing the conditions on the boundaries of the domains X1ð�hÞ and X2ð�hÞ containing
the fluids. For any field w, ½w�Cð�hÞ denotes the jump of w across Cð�hÞ, i.e. ½w�Cð�hÞ ¼ wbath � waluminium. For the
fields u and p we have
u ¼ 0 on oX; ð4Þ
½u�Cð�hÞ ¼ 0; ð5Þ
½ð�pIþ 2lDðuÞÞn�Cð�hÞ ¼ 0: ð6Þ
The fluid part of Xið�hÞ i = 1, 2 is only a subdomain of the domain Xið�hÞ delimited by the front of solidification.
In order to solve the hydrodynamic problem in a fixed domain Xi, we use the method of ‘‘fictitious domain”

involving a penalization tool. The velocity and the pressure will then be defined in both liquids and solids. We
add to Navier–Stokes equation the term KðfsÞu; fs is the solid fraction which is a function of temperature. The
function K is given by ‘‘Carman Kozeny” law:
KðfsÞ ¼
lCf 2

s

P 2ð1� fsÞ3
;

where P is the mean pore size and C is a constant obtained experimentally (see [10]). Eq. (1) may then be mod-
ified to
qðu;rÞu� divð2lDðuÞ � ðp þ qgzÞIÞ þ Ku ¼ j ^ b in X1ð�hÞ [ X2ð�hÞ: ð7Þ
If only liquid phase is present we have K ¼ 0 and the above equation reduces to the usual Navier–Stokes equa-
tion. Inside the mushy zone K may be very large, compared to the other terms, and the above equation mimics
the Darcy law:
rðp þ qgzÞ ¼ �Kuþ j ^ b:
When fs ! 1, we get KðfsÞ ! 1 and then u ¼ 0 in the solid zone.
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We finally obtain the hydrodynamic problem PHD: for given j; b and h, find u, p and �h such that
qðu;rÞu� divð2lDðuÞ � ðp þ qgzÞIÞ þ Ku ¼ j ^ b in X1ð�hÞ [ X2ð�hÞ; ð8Þ
divu ¼ 0 in X1ð�hÞ [ X2ð�hÞ; ð9Þ
ðu; nÞ ¼ 0 on Cð�hÞ; ð10Þ
u ¼ 0 on oX; ð11Þ
½u�Cð�hÞ ¼ 0; ð12Þ
½ð�pIþ 2lDðuÞÞn�Cð�hÞ ¼ 0; ð13ÞZ

D

�hðx; yÞdxdy ¼ V 1: ð14Þ
2.4. The electromagnetic problem

We consider the velocity field u as well as the temperature h are known. From the Faraday’s law we have rot
e ¼ 0, the electric field is then given by e ¼ �r/, where / is the electric potential field computed in K. We still
denote by u the continuous extension of the velocity by zero in K, taking into account Ampere’s law:
rot b ¼ l0j and Ohm’s law: j ¼ rð�r/þ u ^ bÞ in K, we then obtain the electric conservation law given by
divð�rðr/þ u ^ bÞÞ ¼ 0 in K:
We denote by o
on the operator ðn;rÞ, here n is the outer unit normal on oK.

We introduce the following boundary conditions concerning electric potential /:
� r
o/
on
¼ 0 on oK n R;

� r
o/
on
¼ j0 on R2;

/ ¼ 0 on R1;
where j0 is the given current density on the outer boundary of the anode R2. Notice that magnetic induction
b is obtained as a function of electrical current j by using Biot–Savart relation:
bðxÞ ¼ l0

4p

Z
K

jðyÞ ^ ðx� yÞ
kx� yk3

dyþ b0ðxÞ 8x 2 K;
where b0 is some magnetic induction field due to the electric currents which flows outside the cell.
The electromagnetic problem PEM is then formulated as following: for given u and �h, find /; b and j such

that
divðrð�r/þ u ^ bÞÞ ¼ 0 in K; ð15Þ

� r
o/
on
¼ 0 on oK n R; ð16Þ

� r
o/
on
¼ j0 on R2; ð17Þ

/ ¼ 0 on R1; ð18Þ
j ¼ rð�r/þ u ^ bÞ in K; ð19Þ

bðxÞ ¼ l0

4p

Z
K

jðyÞ ^ ðx� yÞ
kx� yk3

dyþ b0ðxÞ 8x 2 K: ð20Þ
2.5. The thermal problem

We consider as known the hydrodynamic field u and the electromagnetic field j. The steady solution we are
looking for will be here obtained as the limiting case of a time dependent heat equation.
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In this subsection, we thus introduce the evolutionary thermal model. In our convection–diffusion problem
the location of the front of solidification (interface separating ledge and liquid bath) is not known a priori and
so needs to be determined as part of the solution. Such problems, widely referred as ‘‘Stefan problems”, are
highly non-linear. In order to overcome difficulty related to the non-linearity of the Stefan interface condition,
an enthalpy function is defined, it represents the total heat content per unit volume of material. The enthalpy
can be expressed in terms of the temperature, the latent heat ‘ and of the solid fraction fs, namely:
HðhÞ ¼
Z h

0

qCpðsÞdsþ ‘ð1� fsðhÞÞ: ð21Þ
Since the enthalpy HðhÞ is a monotonic function we can introduce the function b defined by the relation
bðHðhÞÞ ¼ h: ð22Þ
The function bðHÞ is computed by mathematical processing (interpolation) in the list of ðh;HÞ values cor-
responding to the inverse relation H ¼ b�1ðhÞ given in Eq. (21). With this relation we can formulate the prob-
lem as a Stefan problem in temperature and enthalpy under the form
oH
ot
� divðkðhÞrhÞ þ qCpðu;rhÞ ¼ S; ð23Þ

h ¼ bðHÞ; ð24Þ
which is a non-linear convection–diffusion system. The term ðu;rhÞ denotes the scalar product of u with
rh, S is the heat source provided by Joule effect only. It takes the form
S ¼ rkr/k2
: ð25Þ
The advantage of this temperature–enthalpy formulation, taken in distributional sense, is that the necessity
to carefully track the location of solid–liquid interface is removed and standard numerical technique can be
employed to solve our phase change problem.

The temperature h is subject to the Robin boundary condition:
k
oh
on
¼ aðha � hÞ on oK; ð26Þ
where oh
on is the derivative in the direction of the outward unit normal on oK; a is the coefficient of thermal

transfer, which may depends on both space and temperature, and ha is the temperature outside K. The heat
transfer is due to convection and radiation. The radiation is implicitly taken into account by using:
a ¼ aðhÞ ¼ c1 þ c2ðh� c3Þ W=m2 �C
where c1; c2 and c3 are positive values provided by experimental estimation.
An initial condition on enthalpy Hðx; 0Þ ¼ H 0 on K is assumed.
For a given scalar value T, which will represent the integration time, we denote:
QT ¼ K��0; T ½ and RT ¼ oK��0; T ½:
The thermal problem PTh takes the form: for given u; �h and j, find h and H such that
oH
ot
� divðkðhÞrhÞ þ qCpðu;rhÞ ¼ S in QT ; ð27Þ

h ¼ bðHÞ in QT ; ð28Þ

kðhÞ oh
on
¼ aðhÞðha � hÞ on RT ; ð29Þ

H ¼ H 0 in K; for t ¼ 0: ð30Þ
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2.6. The full problem

We have just described the hydrodynamic, the electromagnetic and the thermal problems. In each of those
we have assumed that the other fields were given.

The problem we want to solve is to find the velocity u, the pressure p, the electrical potential /, the enthalpy
H and the temperature h satisfying the three problems above; the functions bðHÞ; aðhÞ;CpðhÞ; b0ðxÞ;H 0ðxÞ and
fs ¼ fsðhÞ are given and the constants q; l0; ‘;Cp; ha; V 1; r and l are known.

3. The numerical approach

The numerical solution of the mathematical above problems is based on an iterative procedure in which we
carry out alternatively the computation of the three types of unknowns: hydrodynamic HD, electromagnetic
EM and thermic Th. In this section we present the iterative schemes for the problems PHD;PEM and PTh. A
global ‘‘pseudo-evolutive” algorithm involving a space discretization by finite element method is applied for
the solving of the three coupled problems.

3.1. Computation of the hydrodynamic fields

The hydrodynamic problem is iteratively solved. In each solving step, we first solve the problem in a fixed
geometry without normal force equilibrium condition on the interface and then we update the interface posi-
tion by using the non-equilibrium normal force. The solving deals with the alternative application of the two
following steps:

� Step 1: we solve the hydrodynamic problem for the given geometry Cð�hÞ and by taking into account the
interface conditions:
ðu; nÞ ¼ 0; on Cð�hÞ;
½ðð�pIþ 2lDuÞn; tÞ�Cð�hÞ ¼ 0; 8 t tangential vector on Cð�hÞ;
the problem is then easily formulated on a weak formulation.
� Step 2: we update the position of interface in order to verify the equilibrium of normal forces on the inter-

face C, we choose �h :¼ �hþ d�h with:
d�h ¼ �
½ðð�pIþ 2lDuÞn; nÞ�Cð�hÞ þ Cste

½ðj ^ b; ezÞ � qg�Cð�hÞ
:

Here we denote by ez the unit vector of Oz axis and by Cste the constant obtained from the condition:
Z Z
D

d�hðx; yÞdxdy ¼ 0:
An iterative scheme is used to compute umþ1; pmþ1;Cstemþ1;wmþ1 and �hmþ1 as functions of the values
obtained from the previous iteration m.

We set w ¼ ½ðð�pIþ 2lDuÞn; nÞ�Cð�hÞ and fz ¼ ðj ^ b; ezÞ � qg and we define the solving step Sm
HD by
qðum;rÞumþ1 � divð2lDumþ1 � ðpmþ1 þ qgzÞIÞ þ Kumþ1 ¼ jm ^ bm in X1ð�hmÞ [ X2ð�hmÞ; ð31Þ
divðumþ1Þ ¼ 0 in X1ð�hmÞ [ X2ð�hmÞ; ð32Þ
ðumþ1; nÞ ¼ 0 on Cð�hmÞ; ð33Þ
½ðð�pmþ1Iþ 2lDumþ1Þn; tÞ�Cð�hmÞ ¼ 0 8 t tangent on Cð�hmÞ; ð34Þ
wmþ1 ¼ ½ðð�pmþ1Iþ 2lDumþ1Þn; nÞ�Cð�hmÞ; ð35Þ

�hmþ1 ¼ �hm � wmþ1 þ Cstemþ1

½f m
z �Cð�hmÞ

; ð36Þ

Dð�hmþ1 � �hmÞdxdy ¼ 0: ð37Þ
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Noting that the stop condition for this algorithm is based on H 1 norm estimation of umþ1 � um, which has to
be smaller than a tolerance �.
3.2. Computation of the electromagnetic fields

The magnetic induction b depends on electrical current j and implicitly on potential field /, we have to com-
pute the values of these electromagnetic fields for a known velocity field umþ1. To find / we apply an iterative
scheme in which, at the solving step m, we use the value of bm to compute successively /mþ1 by using (15) and
the boundary conditions (16)–(18) and then jmþ1 by using (19). Subsequently, we apply Biot–Savart law to find
the value of bmþ1 as function of jmþ1.

We carry out the solving step Sm
EM by
divð�rr/mþ1 þ rumþ1 ^ bmÞ ¼ 0 in K; ð38Þ

� r
o/mþ1

on
¼ 0 on oK n R; ð39Þ

� r
o/mþ1

on
¼ j0 on R2; ð40Þ

/mþ1 ¼ 0 on R1; ð41Þ

jmþ1 ¼ rð�r/mþ1 þ umþ1 ^ bmÞ in K; ð42Þ

bmþ1ðxÞ ¼ l0

4p

Z
R3

jmþ1ðyÞ ^ ðx� yÞ
kx� yk3

dyþ b0ðxÞ 8 x 2 K: ð43Þ
The stop condition is based on L2 norm estimation of /mþ1 � /m which has to be smaller than a tolerance �.

3.3. Computation of the thermal fields

As already mentioned, we use a pseudo-evolutive description as a mathematical mean which converges
toward the steady solution of thermal problem (27)–(30).

Making use of semi-implicit discretization in time of (27)–(30) we obtain
H mþ1 � H m

s
�r � ðkðhmÞrhmþ1Þ þ qCpðum;rhmþ1Þ ¼Sm; ð44Þ
where Hm; hm and Sm are the values of H, h and S at time tm ¼ mtau and s is the time step discretization. In
order to close the system (44), we make use of the Chernoff scheme, namely
H mþ1 ¼ Hm þ cðhmþ1 � bðH mÞÞ; ð45Þ
where c is a positive relaxation parameter. By replacing (45) in (44), we obtain a scheme in order to compute
the temperature at time tnþ1, i.e.
c
hmþ1 � bðH mÞ

s
�r � ðkðhmÞrhmþ1Þ þ qCpðumþ1;rhmþ1Þ ¼Sm: ð46Þ
It is shown in [11] that the scheme is stable as long as c satisfies the following condition:
0 < c 6
1

sups2R
obðsÞ
os

:

In the above equalities, hmþ1 is not a good value of the temperature in the mushy zone at time tmþ1, the good
value for the temperature is obtained from bðH mþ1Þ. In order to avoid a possible confusion, the first one will be
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denoted by ~h. In time discretization form, we assume that we know Hm at the time step ðtm ¼ msÞ, and we
compute ~hmþ1;H mþ1 and hmþ1 at the solving step Sm

Th with the following scheme:
c
~hmþ1 � bðH mÞ

s
� divðkðhmÞr~hmþ1Þ þ qCpðumþ1;r~hmþ1Þ ¼ Sm in K; ð47Þ

kðhmÞ o
~hmþ1

on
¼ aðhmÞðha � ~hmþ1Þ on oK; ð48Þ

Hmþ1 ¼ H m þ cð~hmþ1 � bðHmÞÞ in K; ð49Þ
hmþ1 ¼ bðHmþ1Þ in K: ð50Þ
3.4. A Galerkin formulation

The three sets of equations Sm
HD; S

m
EM and Sm

Th are numerically solved by a Galerkin formulation suited for a
finite element approach with piecewise polynomials of degree one on a tetrahedron mesh. Fig. 2 shows the
tetrahedron mesh Th used for the computation.

Navier–Stokes Problem Sm
HD is numerically solved by using classical stabilised finite element method P1 (see

[12]) and the potential problem Sm
EM by a standard finite element method with piecewise polynomials of degree

1. In this part we choose to focus our attention on the finite element approach corresponding to the thermal
problem. Taking into account the value of local Peclet number (around 1000 in our case), we are using SUPG
stabilization method (Streamline Upwind Petrov Galerkin) [13]. We define the finite element space
Y Th
h ¼ fu 2 C0ðKÞ; 8 K 2Thg;
where Th denotes a mesh overlapping K with tetrahedrons K. The finite element formulation corresponding
to the set of Eqs. (47)–(50) is given by: find ð~hmþ1

h ; hmþ1
h ;H mþ1

h Þ 2 ðY Th
h Þ

3 such that
Fig. 2. The tetrahedron mesh of the domain.
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Z
K

c
~hmþ1

h � bðH m
h Þ

s
uh dxþ

Z
K

kmðr~hmþ1
h ;ruhÞdx�

Z
oK

amðha � ~hmþ1
h Þuh dR

þ
Z

K
qCpðumþ1;r~hmþ1

h Þuh dx

þ
X

K2Th

Z
K

fK c
~hmþ1

h � bðH m
h Þ

s
þ qCpðumþ1;r~hmþ1

h Þ
 !

ðumþ1;ruhÞdx

þ
X

K2Th

C2

Z
K

qCpdKhKkumþ1kðr~hmþ1
h ;ruhÞdx

¼
Z

K
Smuh dxþ

X
K2Th

Z
K

fKS
mðumþ1;ruhÞdx 8 uh 2 Y Th

h ; ð51Þ

H mþ1
h ¼ Hm

h þ cð~hmþ1
h � rhbðHm

h ÞÞ in K; ð52Þ
hmþ1

h ¼ rhbðHmþ1
h Þ in K; ð53Þ
where rh denotes the interpolant on the grid Th and fK is given by
fK ¼
C1

dK hK
kumþ1k if kumþ1k > 0;

0 if kumþ1k ¼ 0

(
ð54Þ
with dK is
dK ¼
PeK if PeK < 1;

1 if PeK P 1;

�
ð55Þ
and hK is the size of K, the term PeK is the local Peclet number. We denote by km ¼ kðhm
h Þ and am ¼ aðhm

h Þ,
respectively, the thermal conductivity and the heat transfer coefficient at time step m.

Remark. It is obvious that the enthalpy H has a jump on the solidification front which is not a priori known,
but we approach H by Hmþ1

h which is in the subspaces of continuous functions. Thus the approximation
presents a strong gradient in a narrow region where the exact enthalpy makes a jump. In spit the fact that our
discrete problem is well posed, we note that the convergence of the enthalpy approximation toward the
solution H is only true in L2ðKÞ norm.
4. Numerical results

We use GMRES to solve the matrix system resulting from the hydrodynamic problem ðSm
HDÞ and from the

thermal problem ðSm
ThÞ. In the other hand, since the matrix system related to the computation of electrical

fields ðSm
EMÞ is symmetric positive definite, we use the Algebraic Multi Grid method AMG or the Conjugated

Gradient method CG to solve this problem.
The MHD-Thermal calculation is carried out by using (PC Pentium(R) 4, CPU 2.80 GHz, 2 GB RAM) and

the convergence of the global algorithm is obtained in 10 hours. The results relative to the computation of the
electric potential are presented in Fig. 3. Fig. 4 shows the distribution of the temperature through the cell. The
shape of the ledge is given in Fig. 5. We observe clearly the effect of numerical diffusion related to SUPG sta-
bilization on the narrow region of the solidification’s front. It may be worth pointing out the agreement of this
picture with the one representing the velocity field (Fig. 6) and to notice in particular that the locations where
this field is small correspond to the locations where the ledge is large.

It is easy to observe that the numerical results of the velocity field computations match Darcy law on the
part of domain where the liquid fraction is less than 1. This shows the efficiency of using the method of ‘‘aux-
iliary domain” involving a penalization of the velocity field in the hydrodynamic model.

The fluid layer along their depth is discretized with several elements to have more accurate representation of
hydrodynamic field. Further, as mentioned before, the nodes at interface aluminium–bath are allowed to move



Fig. 3. Electric potential results in the cell.

Fig. 4. Temperature results in the cell.
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along vertical line to insure the vertical force equilibrium (Step 2 in the Section 3.1). The main value of error
with respect to the liquid depth is 6%. At the level of aluminium–bath interface we have the highest convection
effects and consequently the finest thickness of the ledge see Fig. 5

It is important to insure that the total heat dissipation matches the internal heat generation.It is critical that
this is achieved in order to consider the results are corresponding to cell steady-state conditions. The total heat
dissipation is obtained from the sum of Joule heat produced in each part Kj, j ¼ 1; . . . ;N , where N is the num-
ber of the parts of the cell traversed by the electrical current:
total heat dissipation ¼
XN

j¼1

Z
Kj

rkr/k2 dx ¼ 408:50 kW:
The total heat lost corresponds to convective dissipation on the cells boundary oK:
Z
oK

aðha � hÞdC ¼ 398:3 kW:



Fig. 6. Velocity field shown before solidification (above) and after solidification (below) wtih mean value = 0.8 cm/s.

Fig. 5. Liquid fraction showing the ledge.
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Fig. 7. Liquid fraction showing the ledge shape, electro-thermal computing.
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The numerical error relative to total Joule dissipation is 2.5%. This value corresponds to the error resulting
from the electro-thermal computation applied by using ANSYS code in a slice part of the cell, see [14].

An other approach was used to obtain the ledge shape. It leans on an electro-thermal computation without
velocity field. The convection effects is simulated by using an artificial thermal conductivity in the metal-bath
zone. A symmetric ledge is then obtained as shown in Fig. 7, compared with Fig. 5, it should be easy to
observe the effects of velocity fields in the configuration of frozen ledge.

5. Conclusions

This work is in the prolongation of the former studies ([15,16]) intended for the derivation of criteria mak-
ing it possible to determine the stable or unstable character movement of the fluids in a Hall–Héroult cell.

In the reference mentioned above these criteria come from an analysis in frequencies of the equations of the
MHD, linearized around a stationary solution. It arises from the numerical studies carried out in [15] and in
[16] that stability of these criteria rests, to a large extent, on the precision with which this stationary solution is
obtained. By precision we understand here not only that related to a correct numerical approach but also that
relating to the adequacy between the model and the description of the characteristics of the cell (see [17,18]).

In this paper the effects of the temperature distribution on the shape of the ledge and on the velocity field
have been considered.

From the observations of the above results, the following conclusions were given:
the effects of hydrodynamic field is shown as an important factor which determines the thermal behavior of

electrolysis cell. From Figs. 5 and 7 respectively, we see that the velocity field has a strong effect on the ledge
shape.

The calculation is done without taking into account the erosion effect of hydrodynamic stress tensor on the
ledge. This problem should be handled in the future.

In spite of the difficulty of multi-fields interactions and the complexity of geometrical conditions, the Cher-
noff scheme is stable in the resolution of thermomagnetohydrodynamic problem.

Finally we note that the study of thermo-mechanical deformation of steel shell of Aluminium reduction cell
under the effect thermal expansion was handled by several authors [19–21]. The thermal computing in such
works was never been coupled with hydrodynamic fields. The calculations of thermal fields shown in this
paper are fruitful for an elasto-thermal computing achieved later by Safa and al. in [22] in order to show
the effects of thermal convection on structural mechanics of the cell, and to exhibit a correlation between
velocity fields and mechanical deformation of the steel shell.
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