
This paper to be published in the Proceedings of the 1996 IEEE International Conference on Robotics and Automation

For more information, contact: Roger Quinn, Associate Professor - Mechanical Engineering
Case Western Reserve University, 216-368-3222

Design of an Agile Manufacturing Workcell for Light
Mechanical Applications

Roger D. Quinn, Greg C. Causey
Department of Mechanical and Aerospace Engineering

Frank L. Merat, David M. Sargent, Nicholas A. Barendt
Wyatt S. Newman, Virgilio B. Velasco Jr.

Department of Electrical Engineering and Applied Physics

Andy Podgurski, Ju-yeon Jo
Leon S. Sterling, Yoohwan Kim

Department of Computer Engineering and Science

Case Western Reserve University (CWRU)
Cleveland Ohio, 44106

Abstract

This paper introduces a design for agile
manufacturing workcells intended for light mechanical
assembly of products made from similar components (i.e.
parts families). We define agile manufacturing as the
ability to accomplish rapid changeover from the assembly
of one product to the assembly of another product. Rapid
hardware changeover is made possible through the use of
robots, flexible part feeders, modular grippers and
modular assembly hardware. The flexible feeders rely on
belt feeding and binary computer vision for pose
estimation. This has a distinct advantage over non-
flexible feeding schemes such as bowl feeders which
require considerable adjustment to changeover from one
part to another. Rapid software changeover is being
facilitated by the use of a real-time, object-oriented
software environment, modular software, graphical
simulations for off-line software development, and an
innovative dual VMEbus controller architecture. These
agile features permit new products to be introduced with
minimal downtime and system reconfiguration.

1. Introduction

1.1 What is Agile Manufacturing ?

Agile manufacturing is a term that has seen
increased use in industry over the past several years. The
definition of “agile”, however, is not clear, nor is it
consistent: “Agility: The measure of a manufacturer’s
ability to react to sudden, unpredictable change in
customer demand for its products and services and make a
profit” 1. “Today factories are coming on line that are
agile at tailoring goods to a customers requirements,

without halting production...”2. “Agile manufacturing
assimilates the full range of flexible production
technologies, along with the lessons learned from total
quality management, ‘just-in-time’ production and ‘lean’
production”3. The only common thread among the
various definitions is the ability to manufacture a variety
of similar products based on what may be rapidly
changing customer needs. In the past, production was
geared toward high-volume production of a single
product. In today’s market, however, the emphasis is
moving toward small lot sizes from an ever-changing,
customer-driven product line.

Figure 1: Agile Workcell

A definition of “agile” manufacturing has been
adopted which applies to light mechanical assembly of
products: Agile manufacturing is the ability to accomplish
rapid changeover between the manufacture of different
assemblies utilizing essentially the same workcell. Rapid
changeover (measured in hours), further, is defined as the
ability to move from the assembly of one product to the

This paper to be published in the Proceedings of the 1996 IEEE International Conference on Robotics and Automation

For more information, contact: Roger Quinn, Associate Professor - Mechanical Engineering
Case Western Reserve University, 216-368-3222

assembly of another product with a minimum of change in
tooling and software. Rapid changeover enables the
production of small lot sizes, allowing for ‘just-in-time’
production. A central theme of our definition of “agile”
manufacturing is the ability to rapidly introduce
(measured in weeks) new assemblies and components into
the system.

In this system, rapid changeover is accomplished
through the use of reusable software, quick change
grippers for the robotic manipulators, modular work
tables, and parts feeders which are flexible enough to
handle several types of parts without needing mechanical
adjustment. These feeders use vision, in place of hard
fixturing, to determine the position and orientation of
parts. Generic, reusable vision routines permit new parts
to be added to the system with a minimum of effort.

A testbed implementation of an agile
manufacturing workcell has been developed (Figure 1).
This includes mechanical manipulators, flexible part
feeders, a vision system (cameras, frame grabber, and a
library of image processing routines), as well as a limited
number of dedicated sensors and actuators needed to
complete a given assembly. The central feature of such a
workcell is a controller capable of controlling each of the
aforementioned components.

1.2 Relevance of CWRU Work

Several companies have implemented what may
be considered “agile” manufacturing. Motorola has
developed an automated factory with the ability to
produce physically different pagers on the same
production line4. At Panasonic, a combination of flexible
manufacturing and just-in-time processing is being used to
manufacture bicycles from combinations of a group of
core parts5.

Against the backdrop of such work, the CWRU
workcell is innovative in several ways. The use of vision-
guided, flexible parts feeders is one example. Another is
the development of software design patterns for agile
manufacturing. The over-arching design philosophy of
quick-changeover, however, is what makes this workcell
particularly novel. The CWRU workcell has been
designed to be a versatile production facility, amenable to
a wide range of applications and an enabling technology
for factory wide agile manufacturing.

2. Workcell Hardware

The agile workcell developed at CWRU consists
of a Bosch flexible automation system, multiple Adept
SCARA robots, as many as four flexible parts feeders per
robot, and an Adept MV controller. An important feature

of the workcell is the central conveyor system, which was
implemented using standard Bosch hardware. It is
responsible for transferring partially completed assemblies
between the robots and for carrying finished units to an
unloading robot The robots are mounted on pedestals near
the conveyor system. Pallets with specialized parts
fixtures are used to carry assemblies throughout the
system, after which the finished assemblies are removed
from the pallet by the unloading robot. Finally, a safety
cage encloses the entire workcell, serving to protect the
operator as well as providing a structure for mounting
overhead cameras.

2.1 Conveyor System

The conveyor system used in the CWRU
workcell is a model T2 manufactured by Bosch. Pallets
are circulated on two main conveyor lines. These lines
are parallel to each other and operate in opposite
directions. Pallets are transferred between these two
sections by means of Lift Transfer Units (LTU’s). These
allow for the circulation of pallets around the conveyor
system and the capability to re-order the pallets.

Each of the pallets in the system is given a
unique identification number, allowing the system to track
and direct its progress. Stops are mounted at critical
points on the conveyor to control the flow of the pallets.

An innovative use of this conveyor system is the
use of short “spur lines”. A spur (Figure 2) is simply an
extension of the conveyor, perpendicular to the main line
(analogous to a railroad spur). This allows the flow of the
main conveyor line to be maintained while a robot
performs an assembly at the spur. Pallets entering a spur
are registered in the robot’s world coordinate frame by an
arm-mounted camera, allowing the robot to place or
remove parts on the pallet and avoiding the expense of
mechanical registration.

2.2 Assembly Stations

Several assembly station layouts were analyzed
in choosing the final layout. After evaluating several
features of each layout, including: placement of the
robots relative to the conveyor, impact of feeder
placement relative to the robot work envelope, and the
robot motions necessary for a generic assembly, it was
determined that the layout in Figure 2 would best suit the
needs of the workcell.

Each assembly robot is surrounded by two
modular, removable work tables and two fixed feeding
tables (Figure 2). The modular tables are easily
exchangeable, allowing for specialized assembly
hardware to be placed within the robot’s work envelope.
The modular tables contain pneumatic actuators and

This paper to be published in the Proceedings of the 1996 IEEE International Conference on Robotics and Automation

For more information, contact: Roger Quinn, Associate Professor - Mechanical Engineering
Case Western Reserve University, 216-368-3222

electrical sensors which can be connected quickly,
allowing the rapid change of any specialized tooling
required for a given assembly. By designing these tables
to be modular and easily exchanged, different assembly
hardware can be quickly accommodated. To achieve
rapid changeover, the modular work tables are registered
in the robot’s world coordinate system in the same
manner as the pallets (i.e. using an arm-mounted camera).
The feeding tables are fixed, and the horizontal, parts-
feeding conveyors are mounted to them.

Figure 2: Workstation Layout

One drawback of the conveyor/spur system, as
outlined above, is the time required to exchange a full
pallet for an empty one. During this time (approximately
15 seconds) the robot would conceivably be inactive. A
simple solution to this problem is a mini-warehouse: a
fixture is located on the exchangeable portion of the work
table to hold a few completed assemblies. During a pallet
swap, the robot can continue the assembly operation
working while the incoming pallet arrives, placing the
completed assemblies in the mini-warehouse. After the
incoming pallet is transferred to the spur, the vision
system registers the pallet. The robot places the current
assembly (still in its gripper) on the pallet and then
proceeds to move the completed assemblies from the
mini-warehouse to the pallet.

2.3 Flexible Parts Feeders

Each feeder consists of three conveyors (Figure
3). The first conveyor is inclined and lifts parts from a
bulk hopper. The second conveyor is horizontal, with a
translucent belt. It transports the parts to the robot,
presenting them at an underlit section near the robot. The
third conveyor returns unused or unfavorably oriented
parts to the bulk hopper.

Proper functioning of the feeders depends on the
parts being lifted from the bulk hopper in a quasi-
singulated manner. Many factors influence the
effectiveness of the inclined conveyor: the angle of the
conveyor with respect to the horizontal, the belt
properties (e.g. coefficient of friction), the type of belt
(cleated, magnetic, vacuum), and the linear speed of the
belt, for example.

Figure 3: Flexible Feeding System Schematic

When different parts are to be fed, the bulk
hopper is emptied and filled with the new parts. If the
parts are of a similar geometry, no changes to the feeding
system are typically needed. Some parts, such as circular
or cylindrical ones (i.e. ones that would roll back down
the incline) may need a different belt surface, such as a
cleated one, or a different angle of inclination.

Overhead cameras are used to locate parts on the
horizontal conveyors. An array of compact fluorescent
lights is installed within each of the horizontal conveyors.
These lights together with a translucent conveyor belt
provide an underlit area in which parts can be presented to
the vision system. Using binary vision tools (currently
provided by an Adept vision system) parts on the feeder
belts are examined. First, the vision system looks to see if
a part is graspable (i.e. the part is in a recognized, stable
pose (position and orientation) and enough clearance
exists between the part and it’s neighbors to grasp it with a
gripper). Second, the pose of the part in the robot’s world
coordinates is determined. This pose, and the motions
associated with acquiring the part, are checked to make
sure that they are within the work envelope of the robot.

2.4 Vision System

One essential function of the vision system is to
determine the pose of components for flexible parts
feeding. Pose estimation is performed using built-in
functions of the AdeptVision software, and must be fast
enough not to interfere with the assembly cycle-time. A
secondary function of the vision system is to register
pallets and modular work tables to a robot’s world
coordinate system, avoiding the need for alignment
hardware. Still another use may be error recovery,

This paper to be published in the Proceedings of the 1996 IEEE International Conference on Robotics and Automation

For more information, contact: Roger Quinn, Associate Professor - Mechanical Engineering
Case Western Reserve University, 216-368-3222

wherein the cameras can be used to inspect critical points
in the system, or in-process assemblies.

The vision system uses a number of standard
CCD cameras, mounted either above the flexible parts
feeders or on the robot arms. Since the number of camera
inputs to the AdeptVision system is limited to four, a low-
cost, custom video multiplexer was developed, utilizing a
monolithic video-switcher integrated circuit. This allows
up to four cameras to be attached to each video input on
the video hardware.

In keeping with the quick-changeover
philosophy, the vision routines are designed to be
reusable; that is a given routine may be used to locate
several different but similar parts (i.e. similar
asymmetries, topology, etc.). This approach has many
advantages, including minimizing the number of software
routines. In addition, this reusability allows for software
modularity and “agility6.” For example, by
parameterizing the characteristics that a routine searches
for, it can be applied to parts that have a similar profile
but are of a different size. This means that parts with
similar geometries to those in the parts library can be
added to the system by simply modifying the inspection
procedures that call these lower-level, reusable routines.

2.5 Introduction of New Parts

Adding a new part to the system involves a few
well defined tasks. A vision routine which determines the
pose of the part is developed, utilizing the library of
reusable vision routines. If the new part has
characteristics that appear nowhere else in the parts
library, new routines may need to be added to the software
library. Also, if the part has not been designed for use on
the generic parts feeders (e.g. it has no stable poses, like a
cylinder), the feeders may require a belt change or a
change in the angle of inclination. A gripper must also be
designed to manipulate the new part. In order to minimize
the specialized hardware and avoid tool changes during
assembly, the gripper design should be performed
concurrently with the gripper designs for other parts to be
assembled at a given robot. For instance, if a given
operation requires both an A widget and a B widget to be
assembled at the first robot, the gripper designer should
take this into account.

In general, it is best to design the parts and the
associated hardware concurrently. This will allow
maximum reuse of software, minimal change to the
flexible feeding setup and the design of a robust assembly
sequence which will enhance unattended operation. This
approach is known as Design for Manufacturing and
Assembly7, or simply DFMA.

3. Computer Hardware/Controller
Design

The current software has been developed entirely
in the V+8 programming language and operating system,
on Adept’s MV controller. For most industrial
applications, this programming environment would be
sufficient; however, it lacks the power and flexibility
needed to support rapid software development and
changeover. This is largely because V+ lacks features
which are standard in other languages and operating
systems, such as user-defined functions, standard data
structures and shell script execution.

To circumvent these limitations, a more
extensive controller interface design is under
development. It will allow the system to support C and
C++, and provide a friendlier and more flexible user
interface. In addition, it will allow the use of a real-time
operating system, thus simplifying software development
and improving performance.

I/O

Reflective
Memory
Network

Ethernet

Adept MV Controller
Agile Workcell

Non-Adept VME Cage Workstation

Figure 4: System Architecture

In this design, the system’s capabilities are
expanded by using a second VMEbus in addition to the
MV controller VMEbus (Figure 4). This second VMEbus
houses I/O boards and dedicated single-board computers
(SBC’s), on which a real-time operating system executes.
C and C++ programs running on the SBC’s are
responsible for all high-level control and robot motions
(e.g. conveyor control, pneumatic operations, specifying
robot destinations), while the MV controller is used
exclusively for low-level robot motions (e.g. servo
control and trajectory generation) and some machine
vision routines. In later implementations, a vision
processing board can also be used on the second
VMEbus, thereby augmenting the AdeptVision system.

The two buses are connected by a reflective
memory network. This consists of two memory cards,
one on each bus, which can be connected by either a
cable or a fiber optic link. Changes made to memory on

This paper to be published in the Proceedings of the 1996 IEEE International Conference on Robotics and Automation

For more information, contact: Roger Quinn, Associate Professor - Mechanical Engineering
Case Western Reserve University, 216-368-3222

one board are automatically reflected on the other, thus
allowing commands and data to be transmitted between
the two buses9. The SBC’s can thus place robot and
vision commands on the reflective memory network.
These are read by a set of command servers running on
the MV controller. The servers execute the commands
and, where applicable, return the results via the same
network.

4. Workcell Software

Software is another key to the flexibility of an
agile manufacturing workcell; however, this flexibility
does not come without careful design. Although software
is inherently easier to change than hardware, the structure
of a software system can degrade after repeated
modification, leading to poor reliability and increased
maintenance costs. In designing the workcell control
software, we have employed software engineering
methods and tools that support the principle of design for
change. In particular, our latest design is object-oriented
(OO), that is, it is based upon identifying the objects of
the system, which are those entities having a state and a
behavior. Physical devices, abstract data structures, and
entire subsystems are modeled as objects that provide a
well-defined set of services whose implementation is
encapsulated and hidden. Emphasis on OO software
design reduces the amount of effort required to introduce
new products into the workcell through reusable code.
The ability to rapidly introduce new products into the
workcell is crucial to an agile system.

Object types or classes are defined using the C++
class construct, wherein services correspond to member-
function calls. New classes are derived from existing
ones by adding services or by overriding the
implementations of existing services. Object orientation
facilitates maintenance because the implementation of a
class can be changed without affecting client code, which
uses the class’s services, and because a derived class can
be used wherever its parent class can be.

In addition to satisfying the requirements of our
particular manufacturing application, we wish to specify
software design components that might prove useful in a
variety of agile manufacturing applications. Hence, we
have sought to identify design patterns for agile
manufacturing. A design pattern is a group of
communicating objects or classes which together
represent a reusable design element that is applicable,
after some specialization, to a variety of systems10. So far,
we have identified design patterns for such activities as
overall system control, communication between system
components, provision of parts and assemblies, scheduling
of system tasks, and error handling.

4.1 Operating System

The initial versions of the workcell control
software were implemented with the V+ operating system
and programming language provided with the Adept MV
controller. Although V+ provides adequate facilities for
many robotic applications, we determined that a more
advanced operating system and programming language
would better support our software design philosophy and
the goals of agile manufacturing. In general, workcell
control involves the management of a number of
concurrent tasks with real-time constraints. Hence, a
real-time operating system (RTOS) with sufficient and
reliable facilities for task scheduling, communication, and
synchronization is desirable.

4.2 Software Architecture

The workcell control software is designed as a
hierarchy of servers. At the highest level, the workcell
controller services requests from the human operator for
crates of finished assemblies. In doing so, it
communicates with subordinate servers. It makes requests
to the pallet server to move pallets along the conveyor
between spurs. The pallet server tracks the movement of
each pallet, but the workcell controller is responsible for
knowing pallet contents. The workcell controller makes
requests to assembly servers, which are associated with
robots, to fill pallets with partial or complete assemblies.
To satisfy these requests, the assembly servers must
communicate with subordinate parts servers as well as
with the robots and special purpose hardware. The parts
servers in turn must communicate with parts feeders and
with the vision system. In general, servers are designed
with as few assumptions about the overall workcell
structure as possible, so that they are not sensitive to
changes in that structure. Where appropriate, servers
operate concurrently; for example, while a robot adds a
part to an assembly, the server for that part attempts to
locate another part in anticipation of the robot’s next
request.

Error handling is also hierarchical. If a server
encounters an error condition, it first tries to resolve it
locally, e.g., by making additional requests to subordinate
servers. If this fails, the server indicates to its client that
it was unable to provide the requested service. The client
then tries to resolve this error condition. As a concrete
example, consider a part server that is unable to locate a
part in its vision window. It will repeatedly advance the
feeder and take pictures. If no part is found within a
certain number of repetitions, the parts feeder will report
failure to the assembly server. If there are no redundant
parts feeders which it can invoke, the assembly server will
signal failure to the workcell controller. In the absence of
redundant servers for the assembly in question, the

This paper to be published in the Proceedings of the 1996 IEEE International Conference on Robotics and Automation

For more information, contact: Roger Quinn, Associate Professor - Mechanical Engineering
Case Western Reserve University, 216-368-3222

controller will inform the operator of a problem requiring
human intervention. Robust, fault-tolerant software is
necessary for unattended-operation of the workcell.

4.3 Workcell Simulation

As the software development progressed
concurrently with the construction of the hardware
system, it became evident that an emulation of the
expected hardware system would be extremely useful.
The decision was made to begin development of a
comprehensive simulation that would permit the workcell
control code to be developed and tested without using the
actual hardware. This allows the control software to be
written and debugged without halting the production of a
functioning workcell. It also proved useful to display the
hardware response graphically (Figure 5), especially for
investigating various workcell layouts.

Figure 5: TELEGRIP Simulation

The conveyor system has been completely
simulated. Detailed simulation of the robots and vision
system is under development. The simulation code
mimics the inputs and outputs of the workcell, allowing
for transparent use of the simulation. In other words, the
code which is used to simulate the control of the workcell
is the same code running on the same processor boards
used to control the physical plant. This is a powerful tool
for software design in that there are no inconsistencies
between the simulation control code and the actual control
code. This eliminates possible porting problems in moving
from simulation to the actual control platform.

5. Conclusions

This research successfully validates the critical
issues for the design of an agile manufacturing workcell.
Flexible parts feeders, machine vision, modular hardware,
an extensive controller interface, on-line error correction,

graphical simulations and modular software are all
essential elements of an extensive implementation.

In continuing work, the system is being expanded
to include modular vision routines, the use of a real-time
operating system, object-oriented programming, and
extensive error detection and recovery. Product design
for manufacturing and assembly will also play a key role
in facilitating feeding, assembly, and pose estimation.

6. Acknowledgments

This work was supported by the Cleveland
Advanced Manufacturing Program (CAMP) through the
Center of Automation and Intelligent Systems Research
(CAISR) and the Case School of Engineering.

1P.M. Noaker. The search for agile manufacturing.
Manufacturing Engineering, 30:28-42, 1993.

2 R. Comerford. The flexible factory: Case studies. IEEE
Spectrum, 30:28-42, 1993.

3 Steven L. Goldman and Roger N. Nagel. Management,
technology and agility: the emergence of a new era in
manufacturing. International Journal of Technology
Management, 8(1/2), 1993.

4 R. Strobel and A. Johnson. The flexible factory: Case
studies. IEEE Spectrum, 30:28-42, 1993.

5 T.E. Bell. The flexible factory: Case studies. IEEE
Spectrum, 30:28-42, 1993.

6 David Michael Sargent. A framework for computer
vision in agile manufacturing. Master’s Thesis, Case
Western Reserve University, 1996.

7 Boothroyd Dewhurst, Inc. Product Design for Assembly,
March 1991

8 Adept Technology Inc., V+ Language Reference Guide,
Version 11.0, June 1993

9 S. May. Using reflective memory to build highly
interactive real-time multiprocessing systems. VMEbus
Systems, 9(3), 1992.

10 E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns-Elements of Reusable Object-Oriented
Software. Addison Wesley, Reading, MA, 1994.

