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Abstract

To assess the safety of concrete structures, cracks are periodically measured and recorded by inspectors who observe cracks with their naked
eye. However, manual inspection is slow and yields subjective results. Therefore, this study proposes a system for inspecting and measuring
cracks in concrete structures to provide objective crack data to be used in evaluating safety. The system consists of a mobile robot system and a
crack detection system. The mobile robot system is controlled to maintain a constant distance from walls while acquiring image data with a
Charged Couple Device (CCD) camera. The crack detection system extracted crack information from the acquired image using image processing.
To ensure accurate crack recognition, the geometric properties and patterns of cracks in a structure were applied to the image processing routine.
The proposed system was verified with laboratory and field experiments.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Approximately 70% of Korea consists of mountainous ter-
rain necessitating the use of many tunnels for railroads and
roads. A concern exists for the safety of concrete structures,
such as tunnels, in traffic environments. To determine the safety
of such structures, periodic inspections have been conducted
using non-destructive tests. However, the slow and complicated
procedures of the non-destructive tests prohibit the total re-
placement of visual inspection by humans. Therefore, non-de-
structive tests have been limited to precision inspections [1].
Visual inspection of concrete structures involves the measure-
ment of cracks by inspectors walking along the surface of the
structure while using only their naked eye. As such, the main
disadvantage of visual inspection is that a rapid and complete
survey cannot be ensured.

To solve these problems, various methods for automatic
crack inspection using image processing have been developed.
These methods have been applied in practical settings including
roads, bridges, fatigues, and sewer-pipes [2–6].
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The particular purpose of this study is to suggest an inte-
grated system of a crack detection module and mobile robot for
application to the tunnel environment.

Similar subjects have been studied and developed. Komatsu
Engineering Corp. has developed and commercialized an image
acquisition system that can acquire the images of road and tunnel
linings by using a laser-scanning device. The Railway Technical
Research Institute in Japan developed an image acquisition system
for railway tunnel linings that uses line CCD (Charged Couple
Device) cameras. Road ware Group Inc., based out of Canada,
commercialized a system that acquires an image of the road at a
speedof 80 km/hwith a resolution of 3–4 cm. This systemconsists
of a CCD camera, an ultrasonic sensor, and a gyro-sensor [7].

Such systems are useful for the collection of crack, leakage,
scale, and spall image data; however, they do not provide auto-
matic crack detection. An algorithm for crack detection and
measurement must be developed to achieve a fully automatic
inspection system, which is required for the rapid and objective
assessment of crack data.

Cameras and lasers are used widely to obtain images for the
inspection of structure surfaces. The cost of the laser-scanning
device is prohibitive; additionally, it has a heat problem that
affects system maintenance. Both attributes make it an inefficient
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Table 1
Matrix camera vs. line scan camera

Matrix camera L.S.C

Density 512×512 2000×2000 5000
Cost Low High Low
No. of cam 20/10 m 5/10 m 2/10 m
Resolution 1 mm/pixel

Fig. 1. Tunnels (Kyunggi-do, South Korea).
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system for use in a wide array of fields. The camera-scanning
device is more cost-effective than the laser device, but it has
illumination problems in dark environments. Since cost is a major
consideration for engineering implementations, surface image
data acquisition must be studied further to achieve a low-cost
camera acquisition method that ensures a high level of safety in
concrete structures. In response to the aforementioned concerns,
this study proposes to develop an automated surface crack in-
spection system for a tunnel that consists of a mobile robot and
crack detection system. This would be faster, cheaper and more
efficient than manual inspection.

2. Experiment condition

The mobile robot system, which was kept at a constant
distance from the wall being inspected, acquires image data
with a line CCD camera that scans the wall without the aid of
inspectors. Table 1 refers to the comparison of two types of
cameras and Table 2 shows the specification of the CCD camera
used in this study.

To obtain fine grain images, the robot used a high power
illuminator, shock absorbing devices, and a sensor that measures
system velocity to control the line CCD camera. To achieve a
resolution of 0.3mm/pixel, the system can operate at up to 5 km/h.

The crack detection system consists of software that extracts
the thickness, length, and orientation of cracks; these are im-
portant factors for the fundamental inspection of a structural
surface. To test the proposed system, experiments were per-
formed inside of buildings and road tunnels as shown in Fig. 1.

3. Description of the inspection robot system

3.1. Inspection

In consideration of safety, concrete structures are inspected
for cracks, leakage, spall and other attributes; however, cracks
are of particular concern, for they most significantly affect the
state of the concrete [8].

Cracks in concrete structures arise from poor repair, contrac-
tions due to rapid temperature decreases, fluctuations between
Table 2
Specifications of the line scan camera

Elements Specification

Density 4096 pixels
Max. Line Rate 23 kHZ
Interfaces LVDS

LVDS: Low Voltage Differential Signaling.
contractions and expansions from temperature changes, and
extra loads from partial ground expansion.

Cracks can be classified as vertical, horizontal, shearing or
complex. About 40% of cracks are vertical, 11% are horizontal
and 30% are shearing, see Fig. 2. [9].

3.2. System configuration

The mobile robot system consisted of optical, mechanical,
and data storage devices. These devices stored images of the
surface of the concrete structure, maximized the contrast dis-
tribution of crack and non-crack areas, and minimized the noise
while the system automatically moves parallel to the structure.

The crack detecting system was software that extracts and
computes the numerical crack information from the image data.
The software extracted the length, width and orientation of
cracks. The crack detecting system provided information that
Fig. 2. Proportions of cracks.



Fig. 3. Schematic diagram of integrated inspection system.

Fig. 5. Schematic diagram of mobile robot.
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helps determine if additional precision inspection of a structure
is needed.

The mobile robot system consisted of a CCD line camera,
frame grabber, controlling apparatus for an auto-focus device,
vibration-reducing device, illuminator and encoders to measure
the velocity and position of the unit; this is shown in Fig. 3. To
compute the distance of the robot from the structure, velocity
and position were used, this allowed the camera to be focused
and controlled without an inspector.

3.3. Mobile robot system

The robot has two wheels that are independently operated by
two auto actuators. A diagram of the kinematical model resul-
tant from the independent actuation of the wheels is shown in
Fig. 4.
Fig. 4. Mobile robot system.
In Fig. 5 M is the standard point located at the center of
gravity of the robot.O represents the origin point of the standard
coordinate. It was assumed that the wheels of the robot could
roll on a surface without sliding to the side. By making this
assumption, the following kinematical formula was obtained.

x�M ¼ r
2
ðh�1 þ h

�
2ÞcosW

y�M ¼ r
2
ðh�1 þ h

�
2ÞsinW

W�M ¼ r

2
ðh�1 þ h

�
2Þ

ð1Þ

Eq. (1) is the kinematical function of the most generalized
two-wheel driven robot. However, the first two formulas have a
non-holonomic feature that cannot be completely integrated,
making the robot difficult to control. The control point, or point
where the wheels are connected to the robot, is separated from
point M by a distance of d. When the control position is set in
the middle of the robot, that is, when d=0, the control point
cannot be accurately collected. However, when d>0, the control
point is collected on 0. Therefore, d cannot be zero, but must be
small enough to allow the control point to be set near to M.

This study used themain hardware and path tracking algorithm
of the mobile system ‘GSMR®’ (Guided Service Mobile Robot),
Fig. 6. Flowchart of the automatic inspection algorithm.



Fig. 7. 1D edge profile of the zero-crossing.

Fig. 9. Example of Dijkstra method.
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which was developed in 2002. More detail mathematical ap-
proaches are explained in Ref. [10].

4. Crack inspection algorithm

4.1. Theoretical approach

Cracks and non-crack areas are distinguished by their con-
trasting respective light reflectance values. The images derived
from this pattern of reflection are assessed using a crack detec-
tion and physical measurement algorithm. Total automation by
image processing is currently limited because accurate results
are difficult to obtain in unpredictable environments. Thus, in
this study, a semi-automatic algorithm for complete crack de-
tection was realized using the Dijkstra method of Fig. 6.

Although the illuminator of the crack detection system was
not completely stable, a high degree of contrast between crack
and non-crack areas may be achieved by the equalization shown
in Eq. (2).

Sk ¼
Xk
j¼0

nj
n

k ¼ 0; 1; 2; N L−1 ð2Þ

Where,

sk Acquired normalized gray-level value
n Number of pixels
nj Number of pixels that have j gray-level value
k The input gray-level

Crack information was extracted from the images by
applying the Sobel and Laplacian operators, which find crack
Fig. 8. Definition of detected edges. (a) 1D profile of ravine. (b) 2D profile of
ravine.
edges. The Sobel operator obtains the orientation of the edge, as
shown in Eq. (3) [11].

/ ¼ atan2
Bf
By

;
Bf
By

� �

fG ¼ f � G
ð3Þ

where

G ¼ 1ffiffiffiffiffiffiffiffi
2kr

p exp −
x2 þ y2

r2

� �

It was easier to find the zero-crossing point from the second
derivative than to find the maximum point from the first
derivative, as shown in Fig. 7.
Fig. 10. Measurement of the crack.



Fig. 11. Experimental setup in a building.

Fig. 13. Window for mapping data.
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Additionally, the Laplacian operator is rotationally invariant,
so the acquired edges were closed curve lines that were advan-
tageous for targeting a region, including a crack edge.

As a second step, the stiff second derivative Gaussian filter
was applied since the Laplacian operator is susceptible to noise.

The detected edges made a ravine, which was defined as a
local minimum point between two edges, see Fig. 8. The 1D
profile shown in Fig. 8(a) was generated by scanning the 2D
image in the direction of the edges shown in Fig. 8(b).

Scanning from one crack edge to another was stopped when
the following conditions were satisfied.

First, when another edge was crossed, the position of the
local minimum point was acquired and stored. Then the width
of the crack from its minimum point to its edge was calculated.
Second, if the gray level of the current pixel was higher than that
of any other edges, scanning was stopped. Finally, scanning was
stopped when the scanned length was longer than a threshold
value. The threshold value provided for a highly efficient cal-
culation because it filtered noise, but cracks wider than the
threshold value would be skipped.

Cracks extracted from images should be grouped according to
their pattern of connection. In an image, a crack is a set of pixels.
Fig. 12. Software of the crack detecting system.
In this paper, the depth first search method was implemented to
group and label each crack region [12]. Because the images were
discontinuous, the connectivity between pixels may be low. This
further influenced the calculation of features by sometimes in-
consistently labeling cracks from the same region. To solve this
problem, the slope of each segment end was computed with a
certain number of pixels being modeled into a straight line.
Segments were merged if the gradient change between them was
miniscule.

4.2. Crack extraction via a graph search

With given start and end points, a graph was constructed by
images and the boundary of the image was estimated through
finding the least cost function. The pixels of an image were
interpreted as nodes and eight-neighborhoods of a pixel were
connected via links in the graph, using the Dijkstra method to
find the shortest path [13].

Fig. 9 represents an example of Dijkstra Method.
The least cost function operated as follows.

Process 1 Input all nodes from the expansion of the start node
into the queue. The previous node pointer is defined
as nA. Then, calculate the cost of the expanded nodes.
Fig. 14. Image overlay for calibration.



Fig. 17. Image of subway inner wall.

Fig. 15. Image of indoor wall.
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Process 2 There is a failure if the queue is empty. Next, output
the least cost node ni from the queue and remove it. If
ni=nb, back-track the previous pointer saved in each
node and terminates.

Process 3 If the condition to terminate in Process 2 was not
satisfied, expand the node ni and input all other fol-
lowing nodes into the queue. Next, define the previous
node pointer as ni and calculate each node cost. Go
back to Process 2.

This algorithm always found an optimal value. However,
numerous enlarged nodes may result from the function. To
correct this inefficiency, a method that did not require the ex-
pansion of a node if the cost per unit length was above a certain
value was used.

4.3. Crack measurement

Not all prospective cracks are actually cracks. Elements
causing confusion include construction layers, an artificial
mark, noise, or a blot. Potentially erroneous areas were removed
when they were small enough to be considered noise, were not
long and narrow, and were overly linear. Linear features are
often construction layers or cables.

This paper used the quantum for the length, width, and
direction of the crack. The widths of points composing each
area were calculated when the region was formed from the
edge. Outlier measurements were determined with the width
derived as a mean value using five lengths of the median filter.
Fig. 16. Extracted crack of indoor wall.
This one extracts orderly middle value. The width of each area
was calculated as in Eq. (4).

w ¼ 1
N

XN
i¼1

wi
w
; wj

w ¼ medfwj−2; N ;wjþ2g ð4Þ

N Number of areas
w mean value of width
w͡ Median value of 5 lengths

The length of a crack was determined from the number of
pixels in the image. After calculating the length of each dia-
gonal as

ffiffiffi
2

p
, and the vertical and horizontal lines as one, the real

length was measured by camera calibration (Fig. 10).

5. Experiment

5.1. Experiment setup

An experiment was conducted in an indoor structure. A
mobile robot with an encoder on its wheel obtained the image of
the surface wall. The robot was capable of keeping a constant
distance from the wall. If the mobile robot could not keep a
constant distance from the wall, the image would remain in
focus due to the use of an adjusting focus ring actuated by a
laser distance sensor. To prevent vibration from being trans-
mitted from the floor to the camera, the flat board holding the
camera was stabilized with a wire rope. Fig. 11 shows the robot
setup for indoor use.

Fig. 12 describes the image processing software. The crack
information is shown on the right side of the software. Fig. 13
shows the menu for the camera calibration, the inputs were
obtained by converting the distance between each pixel to mil-
limeter. The camera was calibrated using a plate that had a
Fig. 18. Cracks extracted from the subway inner wall.



Fig. 20. Extracted image of the subway inner wall with cracks expressed by color
according to width.
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matrix of black dots on its surface; each separated by 5 mm.
Fig. 14 shows an image overlay of both an obtained image and
the extracted compensating points.

5.2. Experiment results

The image acquired from the indoor structure is shown in
Fig. 15 and the detected cracks are shown in Fig. 16. The two
vertical lines shown to the right in Fig. 15 are grooves em-
bedded in the structure. Thus, these highly straight lines were
removed after their recognition. The result of the experiment
showed that the straight lines on the right side of Fig. 15 were
excluded because those lines were not cracks.

Figs. 17 and 18 show the image processed and the cracks
extracted, respectively.

As the finishing lines of the iron bars were not longish, but
instead formed certain areas, they were not recognized as cracks.

Results were depicted pictorially to allow for discrimination by
the human eye. The cracks were displayed using their vertical,
horizontal, and diagonal orientations, as well as their length,
width, starting and ending points. The crack inspection system
proposed in this paper, though dependent on the state of the
operating environment, had an overall error rate of 75–85%. The
measurement error of recognized cracks was 10% or less.

Fig. 19 represents the wall image of a subway inner side
tunnel wall. Using our system, the image was extracted fol-
lowing the distinguished line segment of Fig. 20.

This result showed that the proposed system was able to
recognize cracks even when they were not longish in shape ob-
viously need to more experiment, included spall, halls, and so on.

6. Conclusion

This paper proposed a structure crack inspection system that
used image processing to avoid common human detection errors,
including crack misidentification, slow detection, subjectivity,
and data management inefficiency. The system was validated in
indoor experimental settings, including an indoor structure, a
road tunnel, and a subway tunnel. Even with advanced detection
methods, erroneous recognition of cracks and non-cracks pre-
vails. Therefore, the system was semi-automated to allow for the
Fig. 19. Image of the subway inner wall including leakage, spall, and other
forms of damage.
discarding of erroneous points, which was ensured by using a
graph search method where the user inputs the start and end
points of each crack.

In order to achieve a practical and applicable system, further
study of crack characteristics and a fully automated algorithm
must be conducted. It is hoped that this paper will encourage
such future research.
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