
Int J Adv Manuf Technol (2000) 16:739–747
 2000 Springer-Verlag London Limited

Automated Assembly Modelling for Plastic Injection Moulds

X. G. Ye, J. Y. H. Fuh and K. S. Lee
Department of Mechanical and Production Engineering, National University of Singapore, Singapore

An injection mould is a mechanical assembly that consists of
product-dependent parts and product-independent parts. This
paper addresses the two key issues of assembly modelling
for injection moulds, namely, representing an injection mould
assembly in a computer and determining the position and
orientation of a product-independent part in an assembly. A
feature-based and object-oriented representation is proposed
to represent the hierarchical assembly of injection moulds.
This representation requires and permits a designer to think
beyond the mere shape of a part and state explicitly what
portions of a part are important and why. Thus, it provides
an opportunity for designers to design for assembly (DFA). A
simplified symbolic geometric approach is also presented to
infer the configurations of assembly objects in an assembly
according to the mating conditions. Based on the proposed
representation and the simplified symbolic geometric approach,
automatic assembly modelling is further discussed.

Keywords: Assembly modelling; Feature-based; Injection
moulds; Object-oriented

1. Introduction

Injection moulding is the most important process for manufac-
turing plastic moulded products. The necessary equipment con-
sists of two main elements, the injection moulding machine
and the injection mould. The injection moulding machines used
today are so-called universal machines, onto which various
moulds for plastic parts with different geometries can be
mounted, within certain dimension limits, but the injection
mould design has to change with plastic products. For different
moulding geometries, different mould configurations are usually
necessary. The primary task of an injection mould is to shape
the molten material into the final shape of the plastic product.
This task is fulfilled by the cavity system that consists of core,
cavity, inserts, and slider/lifter heads. The geometrical shapes

Correspondence and offprint requests to: Dr Jerry Y. H. Fuh, Depart-
ment of Mechanical and Production Engineering, National University
of Singapore (NUS), 10 Kent Ridge Crescent, Singapore 119260.
E-mail: mpefuhyhKnus.edu.sg

and sizes of a cavity system are determined directly by the
plastic moulded product, so all components of a cavity system
are called product-dependent parts. (Hereinafter,product refers
to a plastic moulded product,part refers to the component of
an injection mould.) Besides the primary task of shaping the
product, an injection mould has also to fulfil a number of
tasks such as the distribution of melt, cooling the molten
material, ejection of the moulded product, transmitting motion,
guiding, and aligning the mould halves. The functional parts
to fulfil these tasks are usually similar in structure and geo-
metrical shape for different injection moulds. Their structures
and geometrical shapes are independent of the plastic moulded
products, but their sizes can be changed according to the
plastic products. Therefore, it can be concluded that an injection
mould is actually a mechanical assembly that consists of
product-dependent parts and product-independent parts. Figure
1 shows the assembly structure of an injection mould.

The design of a product-dependent part is based on extracting
the geometry from the plastic product. In recent years,
CAD/CAM technology has been successfully used to help
mould designers to design the product-dependent parts. The

Mould

Mouldbase

Cool

Fill

Layout

Plug

Socket

Cav_1

Cav_2

CA-plate

Guild-bush

TCP-plate

Bep-plate

Cb-plate

Ea-plate

Eb-plate

Guid-pin

Ip-plate

Ret-pin

Slider
body

guide

Stop-blk

Heel-blk

head

Core

Cavity

Product-independent part Product-dependent part

Move-half

Fixed-half

Fig. 1.Assembly structure of an injection mould.



740 X. G. Ye et al.

automatic generation of the geometrical shape for a product-
dependent part from the plastic product has also attracted a
lot of research interest [1,2]. However, little work has been
carried out on the assembly modelling of injection moulds,
although it is as important as the design of product-dependent
parts. The mould industry is facing the following two difficult-
ies when use a CAD system to design product-independent
parts and the whole assembly of an injection mould. First,
there are usually around one hundred product-independent parts
in a mould set, and these parts are associated with each other
with different kinds of constraints. It is time-consuming for
the designer to orient and position the components in an
assembly. Secondly, while mould designers, most of the time,
think on the level of real-world objects, such as screws, plates,
and pins, the CAD system uses a totally different level of
geometrical objects. As a result, high-level object-oriented ideas
have to be translated to low-level CAD entities such as lines,
surfaces, or solids. Therefore, it is necessary to develop an
automatic assembly modelling system for injection moulds to
solve these two problems. In this paper, we address the follow-
ing two key issues for automatic assembly modelling: rep-
resenting a product-independent part and a mould assembly in
a computer; and determining the position and orientation of a
component part in an assembly.

This paper gives a brief review of related research in
assembly modelling, and presents an integrated representation
for the injection mould assembly. A simplified geometric sym-
bolic method is proposed to determine the position and orien-
tation of a part in the mould assembly. An example of auto-
matic assembly modelling of an injection mould is illustrated.

2. Related Research

Assembly modelling has been the subject of research in diverse
fields, such as, kinematics, AI, and geometric modelling. Lib-
ardi et al. [3] compiled a research review of assembly model-
ling. They reported that many researchers had used graph
structures to model assembly topology. In this graph scheme,
the components are represented by nodes, and transformation
matrices are attached to arcs. However, the transformation
matrices are not coupled together, which seriously affects the
transformation procedure, i.e. if a subassembly is moved, all
its constituent parts do not move correspondingly. Lee and
Gossard [4] developed a system that supported a hierarchical
assembly data structure containing more basic information
about assemblies such as “mating feature” between the compo-
nents. The transformation matrices are derived automatically
from the associations of virtual links, but this hierarchical
topology model represents only “part-of” relations effectively.

Automatically inferring the configuration of components in
an assembly means that designers can avoid specifying the
transformation matrices directly. Moreover, the position of a
component will change whenever the size and position of its
reference component are modified. There exist three techniques
to infer the position and orientation of a component in the
assembly: iterative numerical technique, symbolic algebraic
technique, and symbolic geometric technique. Lee and Gossard
[5] proposed an iterative numerical technique to compute the

location and orientation of each component from the spatial
relationships. Their method consists of three steps: generation
of the constraint equations, reducing the number of equations,
and solving the equations. There are 16 equations for “against”
condition, 18 equations for “fit” condition, 6 property equations
for each matrix, and 2 additional equations for a rotational
part. Usually the number of equations exceeds the number of
variables, so a method must be devised to remove the redundant
equations. The Newton–Raphson iteration algorithm is used to
solve the equations. This technique has two disadvantages:
first, the solution is heavily dependent on the initial solution;
secondly, the iterative numerical technique cannot distinguish
between different roots in the solution space. Therefore, it
is possible, in a purely spatial relationship problem, that a
mathematically valid, but physically unfeasible, solution can
be obtained.

Ambler and Popplestone [6] suggested a method of comput-
ing the required rotation and translation for each component
to satisfy the spatial relationships between the components in
an assembly. Six variables (three translations and three
rotations) for each component are solved to be consistent with
the spatial relationships. This method requires a vast amount
of programming and computation to rewrite related equations
in a solvable format. Also, it does not guarantee a solution
every time, especially when the equation cannot be rewritten
in solvable forms.

Kramer [7] developed a symbolic geometric approach for
determining the positions and orientations of rigid bodies that
satisfy a set of geometric constraints. Reasoning about the
geometric bodies is performed symbolically by generating a
sequence of actions to satisfy each constraint incrementally,
which results in the reduction of the object’s available degrees
of freedom (DOF). The fundamental reference entity used by
Kramer is called a “marker”, that is a point and two orthogonal
axes. Seven constraints (coincident, in-line, in-plane, parallelFz,
offsetFz, offsetFx and helical) between markers are defined.
For a problem involving a single object and constraints between
markers on that body, and markers which have invariant attri-
butes, action analysis [7] is used to obtain a solution. Action
analysis decides the final configuration of a geometric object,
step by step. At each step in solving the object configuration,
degrees of freedom analysis decides what action will satisfy
one of the body’s as yet unsatisfied constraints, given the
available degrees of freedom. It then calculates how that action
further reduces the body’s degrees of freedom. At the end of
each step, one appropriate action is added to the metaphorical
assembly plan. According to Shah and Rogers [8], Kramer’s
work represents the most significant development for assembly
modelling. This symbolic geometric approach can locate all
solutions to constraint conditions, and is computationally
attractive compared to an iterative technique, but to implement
this method, a large amount of programming is required.

Although many researchers have been actively involved in
assembly modelling, little literature has been reported on fea-
ture based assembly modelling for injection mould design.
Kruth et al. [9] developed a design support system for an
injection mould. Their system supported the assembly design
for injection moulds through high-level functional mould
objects (components and features). Because their system was



Automated Assembly Modelling 741

based on AutoCAD, it could only accommodate wire-frame
and simple solid models.

3. Representation of Injection Mould
Assemblies

The two key issues of automated assembly modelling for
injection moulds are, representing a mould assembly in com-
puters, and determining the position and orientation of a pro-
duct-independent part in the assembly. In this section, we
present an object-oriented and feature-based representation for
assemblies of injection moulds.

The representation of assemblies in a computer involves
structural and spatial relationships between individual parts.
Such a representation must support the construction of an
assembly from all the given parts, changes in the relative
positioning of parts, and manipulation of the assembly as a
whole. Moreover, the representations of assemblies must meet
the following requirements from designers:

1. It should be possible to have high-level objects ready to
use while mould designers think on the level of real-
world objects.

2. The representation of assemblies should encapsulate oper-
ational functions to automate routine processes such as
pocketing and interference checks.

To meet these requirements, a feature-based and object-oriented
hierarchical model is proposed to represent injection moulds.
An assembly may be divided into subassemblies, which in turn
consists of subassemblies and/or individual components. Thus,
a hierarchical model is most appropriate for representing the
structural relations between components. A hierarchy implies
a definite assembly sequence. In addition, a hierarchical model
can provide an explicit representation of the dependency of
the position of one part on another.

Feature-based design [10] allows designers to work at a
somewhat higher level of abstraction than that possible with
the direct use of solid modellers. Geometric features are
instanced, sized, and located quickly by the user by specifying
a minimum set of parameters, while the feature modeller works
out the details. Also, it is easy to make design changes because
of the associativities between geometric entities maintained in
the data structure of feature modellers. Without features,
designers have to be concerned with all the details of geometric
construction procedures required by solid modellers, and design
changes have to be strictly specified for every entity affected
by the change. Moreover, the feature-based representation will
provide high-level assembly objects for designers to use. For
example, while mould designers think on the level of a real-
world object, e.g. a counterbore hole, a feature object of a
counterbore hole will be ready in the computer for use.

Object-oriented modelling [11,12] is a new way of thinking
about problems using models organised around real-world con-
cepts. The fundamental entity is the object, which combines
both data structures and behaviour in a single entity. Object-
oriented models are useful for understanding problems and
designing programs and databases. In addition, the object-

oriented representation of assemblies makes it easy for a
“child” object to inherit information from its “parent”.

Figure 2 shows the feature-based and object-oriented hier-
archical representation of an injection mould. The represen-
tation is a hierarchical structure at multiple levels of abstraction,
from low-level geometric entities (form feature) to high-level
subassemblies. The items enclosed in the boxes represent
“assembly objects” (SUBFAs, PARTs and FFs); the solid lines
represent “part-of” relation; and the dashed lines represent
other relationships. Subassembly (SUBFA) consists of parts
(PARTs). A part can be thought of as an “assembly” of form
features (FFs). The representation combines the strengths of a
feature-based geometric model with those of object-oriented
models. It not only contains the “part-of” relations between
the parent object and the child object, but also includes a
richer set of structural relations and a group of operational
functions for assembly objects. In Section 3.1, there is further
discussion on the definition of an assembly object, and detailed
relations between assembly objects are presented in Section 3.2.

3.1 Definition of Assembly Objects

In our work, an assembly object,O, is defined as a unique,
identifiable entity in the following form:

O = (Oid, A, M , R) (1)

Where:

Oid is a unique identifier of an assembly object (O).
A is a set of three-tuples, (t, a, v). Eacha is called an
attribute of O, associated with each attribute is atype,
t, and avalue, v.
M is a set of tuples, (m, tc1, tc2, %, tcn, tc). Each
element of M is a function that uniquely identifies a
method. The symbolm represents a method name; and
methods define operations on objects. The symboltci (i

Fig. 2.Feature-based, object-oriented hierarchical representation.



742 X. G. Ye et al.

= 1, 2, %, n) specifies the argument type andtc specifies
the returned value type.
R is a set of relationships amongO and other assembly
objects. There are six types of basic relationships
between assembly objects, i.e.Part-of, SR, SC, DOF,
Lts, and Fit .

Table 1 shows an assembly object of injection moulds, e.g.
ejector. The ejector in Table 1 is formally specified as:

(ejector-pinF1, {(string, purpose, ‘ejecting moulding’),
(string, material, ‘nitride steel’), (string, catalogFno,
‘THX’)},
{(checkFinterference(), boolean), (pocketFplate(), boolean)},
{(part-of ejectionFsys), (SR Align EBFplate), (DOF Tx,
Ty)}).

In this example, purpose, material and catalogFno are
attributes with a data type ofstring; checkFinterferenceand
pocketFplate are member functions; andPart-of, SRand DOF
are relationships.

3.2 Assembly Relationships

There are six types of basic relationships between assembly
objects,Part-of, SR, SC, DOF, Lts, and Fit .

Part-of An assembly object belongs to its ancestor object.
SR Spatial relations: explicitly specify the positions

and orientations of assembly objects in an
assembly. For a component part, its spatial
relationship is derived from spatial constraints
(SC).

SC Spatial constraints: implicitly locate a component
part with respect to the other parts.

DOF Degrees of freedom: are allowable translational/
rotational directions of motion after assembly, with
or without limits.

Lts Motion limits: because of obstructions/interferences,
the DOF may have unilateral or bilateral limits.

Fit Size constraint: is applied to dimensions, in order
to maintain a given class of fit.

Table 1.Definition of an assembly object-ejector.

Object Oid
ejector-pinF1
Instance-of EjectorFpin Derived from ejector class

A Purpose “ejecting moulding” Type string
Material “nitrided steel” Type string
CatalogFno “THX” Type string

M CheckFinterference Check interference
(coolFobj) between ejectors and

cooling lines
PocketFplate() Make a hole on plate to

accommodate ejector pins
R Part-of ejectorFsys

SR align with EB
plate

DOF Tx, Ty

Among all the elements of an assembly object, the relation-
ships are most important for assembly design. The relationships
between assembly objects will not only determine the position
of objects in an assembly, but also maintain the associativities
between assembly objects. In the following sub-sections, we
will illustrate the relationships at the same assembly level with
the help of examples.

3.2.1 Relationships Between Form Features

Mould design, in essence, is a mental process; mould designers
most of the time think on the level of real-world objects such
as plates, screws, grooves, chamfers, and counter-bore holes.
Therefore, it is necessary to build the geometric models of all
product-independent parts from form features. The mould
designer can easily change the size and shape of a part,
because of the relations between form features maintained in
the part representation. Figure 3(a) shows a plate with a
counter-bore hole. This part is defined by two form features,
i.e. a block and a counter-bore hole. The counter-bore hole
(FF2) is placed with reference to the block featureFF1, using
their local coordinatesF2 and F1, respectively. Equations (2)–
(5) show the spatial relationships between the counter-bore
hole (FF2) and the block feature (FF1). For form features,
there is no spatial constraint between them, so the spatial
relationships are specified directly by the designer. The detailed
assembly relationships between two form features are defined
as follows:

SR(FF2, FF1):
F2i = −F1i (2)
F2j = −F1j (3)

Fig. 3. Assembly relationships.



Automated Assembly Modelling 743

F2k = F1k (4)
r2F = r 1F + b22* F1j + AF1* F1i (5)

DOF:
ObjFhasF1FRDOF(FF2, F2j)
The counter-bore feature can rotate about axisF2j.

LTs(FF2, FF1):
AF1 , b11 − 0.5*b21 (6)

Fit (FF2, FF1):
b22 = b12 (7)

Where

F and r are the orientation and position vectors of fea-
tures.
F1 = (F1i, F1j, F1k), F2 = (F2i, F2j, F2k).
bij is the dimension of form features, Subscripti is
feature number,j is dimension number.
AF1 is the dimension between form features.

Equations (2)–(7) present the relationships between the form
feature FF1 and FF2. These relationships thus determine the
position and orientation of a form feature in the part. Taking
the part as an assembly, the form feature can be considered
as “components” of the assembly.

The choice of form features is based on the shape character-
istics of product-independent parts. Because the form features
provided by the Unigraphics CAD/CAM system [13] can meet
the shape requirements of parts for injection moulds and the
spatial relationships between form features are also maintained,
we choose them to build the required part models. In addition
to the spatial relationships, we must record LTs, Fits relation-
ships for form features, which are essential to check the
validity of form features before updating the models in the
CAD system.

3.2.2 Relationships Between Parts

In an assembly, the position and orientation of a part is usually
associated with another part. Figure 3(b) shows a plate (PP1)
and a screw (PP2). The relative placement of the screw is
constrained by the counter-bore hole on the plate. The relation-
ships between the screw and the plate are defined as follows:

SR(PP2, PP1):
P2 = Mp•P1 (8)
r2 = M r • r1 (9)

SC(PP2, PP1):

mate(f1,f2) > axisFalign(axisF1, axisF2)

DOF:
ObjFhasF1FRDOF(PP2, P2j)
The screw can rotate aboutP2j of the plate.

LTs(PP2, PP1):
A22 , A12 (10)

Fits(PP2, PP1):
A13 = A21 + cc (11)

Where:

P1 and P2 are the orientation vectors of the plate and
the screw, andP1 = (P1i, P1j, P1k), P2 = (P2i, P2j, P2k).
M p and M r are the transformation matrix between the
screw and the plate.
> is a Boolean operator.
mate and axisFalign are constraints (detailed discussion
about them are given in the next section).
r is a position vector.
Aij is dimension of parts. Subscripti is part number, and
j is dimension number.
cc is the clearance between the screw and the plate.

As we can see in Eqs. (8) and (9), it is essential to calculate
the matrixMp andM r to determine the position and orientation
of the screw with reference to the plate.Mp and M r can be
derived from the spatial constraints (SC). This derivation
requires the task of inferring the configuration of a part in an
assembly, which will be discussed in the next section.

We have presented a representation of the injection mould
assembly in a computer. At this stage, it might be worthwhile
to summarise the benefits of this representation. Assemblies
are represented as a collection of subassemblies that in turn
may consist of subassemblies and/or component parts, and a
component part can further be considered as the assembly of
form features. Such hierarchical relationships imply an ordering
on the assembly sequence and a parent–child link. The feature-
based representation not only allows designers to work at a
high-level of abstraction while designing individual parts, but
also extends the feature paradigm to assembly modelling,
because this representation allows a component to be changed
parametrically with the other components consequently having
their positions changed accordingly. The object-oriented rep-
resentation can combine both the data structure and operation
in an object. The encapsulated operational functions in an
assembly object can help to automate the routine processes
such as the pocketing and interference check.

4. Inferring Part Configuration in the
Assembly

As we can see from Eqs (8) and (9), the positions and
orientations of parts in an assembly are eventually represented
by the transformation matrices. For the sake of convenience,
the spatial relationships are usually specified by the high-level
mating conditions such as “mate”, “align” and “parallel”. Thus,
it is essential to derive automatically the explicit transformation
matrices between parts from implicit constraint relationships.
Three techniques to infer the configurations of parts in an
assembly have been discussed in Section 2. Because the sym-
bolic geometric approach can locate all solutions to constraint
equations with polynomial time complexity, we use this
approach to determine the positions and orientations of parts
in an assembly. To implement this approach in assembly
modelling software, a large amount of programming is required.
Therefore, a simplified geometric approach is proposed to
determine the positions and orientations of parts in an assembly.



744 X. G. Ye et al.

In the symbolic geometric approach, determining positions
and orientations of parts is performed symbolically by generat-
ing a sequence of actions to satisfy each constraint incremen-
tally. The information required to satisfy each constraint
incrementally is stored in a table of “plan fragments”. Each
plan fragment is a procedure that specifies a sequence of
measurements and actions that move parts in such a way as
to satisfy the corresponding constraint. The plan fragment also
records the object’s new degrees of freedom (DOFs) and
associated geometric invariants. Conceptually, Kramer’s plan
fragment table is a 3D dispatch table. We use TDOF to
represent translational degrees of freedom and RDOF to rep-
resent rotational degrees of freedom. Then an entry in the plan
fragment table has the following form:

planFfragment: kTDOF, RDOF, constraintFtypel
TDOF = {0, 1, 2, 3}
RDOF = {0, 1, 2, 3}
constraintFtype = {coincident, in-line, in-plane,
parallelFz, offsetFz, offsetFx and helical}

The plan fragment table is an exhaustive enumeration of all
the states in the search space for the problem of moving an
object to satisfy a series of constraints between markers on
the object and markers fixed in the global coordinate frame.
To enumerate the combination of different values of the above
three parameters, 82 entries will be generated [7]. If the search
space for the problem can be reduced the number of entries
in a plan fragment table will decrease. To achieve this, the
number of enumerate values for entry parameters must be
decreased. For example, for a specified constraint type, if the
enumeration values of TDOF change from {0,1,2,3} to {0,3},
then the search space is reduced.

After a careful analysis of the constraints between compo-
nents of an injection mould, four basic primitive constraints are
introduced:in-line, parallelFz, parallelFz1 andparallelFoffset.
Their definitions and algebraic equations are as follows:

in-line(M1, M2): M1 lies on the line throughM2 parallel to the
Z-axis of M2.

u[gmp(M1) − gmp(M2)]u × gmz(M2)u = 0 (12)

parallelFz(M1, M2): the Z-axes of markersM1 and M2 are
parallel and have the same direction.

gmz(M1) • gmz(M2) = 1 (13)

parallelFz1(M1, M2): the Z-axes of markersM1 and M2 are
parallel and have the opposite direction.

gmz(M1) • gmz(M2) = −1 (14)

paralleFoffset(M1, M2, d): Applicable only in conjunction
with parallelFz or parallelFz1, specifies the distance
betweenM1 position andM2 position.
gmp(M1) − gmp(M2) = d (15)

Where:

M1 and M2 are markers.
gmp(M) is the global marker position.

gmz(M) is the global markerZ-axis.

gmx(M) the global markerX-axis.

d is the distance betweenM1 and M2.

In our simplified symbolic geometric approach, the enumer-
ation vales of constraint types are {inFline, parallelFz, par-
relFz1, paralleFoffset}. Compared with Kramer’s symbolic geo-
metric approach, our constraint types are reduced from seven
to four. This simplification will reduce the number of entries
in the plan fragment table. Based on these four primitive
constraints, three high-level constraints were synthesised for
the user’s convenience. They aremate (M1, M2, d),
planeFalign(M1, M2, d), and axisFalign(M1, M2). Their defi-
nitions are given as follows:

mate(M1, M2, d):

parallelFz1(M1, M2) > parallelFoffset(M1, M2, d)

planeFalign(M1, M2, d):

parallelFz(M1, M2) > parallelFoffset(M1, M2, d)

axisFalign(M1, M2):

parallelFz(M1, M2) > inFline(M1, M2)

The assembly objects in an injection mould can have one,
two or three synthesised constraints. For two and three syn-
thesised constraints, the constraint sequence is further restricted.
The sequences are as follows:

mate(M1, M2, d) > planeFalign(M3, M4, d2)

mate(M1, M2, d1) > axisFalign(M3, M4)

planeFalign(M1, M2, d) > axisFalign(M3, M4)

mate(M1, M2, d1) > axisFalign(M3, M4, d2) >
axisFalign(M5, M6).

Because of these restrictions on the constraint sequences,
the number of entries in our plan fragment table is substantially
reduced. To solve for one, two or three constraints allowed in
our system, only nine entries are required. For interactive
addition of components to the assembly, more constraint types
and free sequences will increase the flexibility for users. How-
ever, in automatic assembly modelling for an injection mould,
as the spatial relationships are predefined in assembly objects,
some of the sequence restrictions do not matter. With the
above-defined synthesised constraints, the structural relation-
ships of a component part can be specified in the database of
the components. When adding a component part to the mould
assembly, the system will first decompose the synthesised
constraints into primitive constraints, then generate a group
of fragment plans to orient and position the component in
the assembly.

5. Automated Assembly Modelling of
Injection Moulds

Any assembly of injection moulds consists of product-
independent parts and product-dependent parts. The design of
individual product-dependent parts is based on the geometry
of the plastic part [1,2]. Usually the product-dependent parts
have the same orientation as that of the top-level assembly,
and their positions are specified directly by the designer. As
for the design of product-independent parts, conventionally,
mould designers select the structures from the catalogues,



Automated Assembly Modelling 745

build the geometric models for selected structures of product-
independent parts, and then add the product-independent parts
to the assembly of the injection mould. This design process is
time-consuming and error-prone. In our system, a database is
built for all product-independent parts according to the
assembly representation and object definition described in Sec-
tion 3. This database not only contains the geometric shapes
and sizes of the product-independent parts, but also includes
the spatial constraints between them. Moreover, some routine
functions such as interference check and pocketing are encapsu-
lated in the database. Therefore, the mould designer must select
the structure types of product-independent parts from the user
interfaces, and then the software will automatically calculate
the orientation and position matrices for these parts, and add
them to the assembly.

5.1 Mould Base Subassembly

As can be seen from Fig. 1, the product-independent parts can
be further classified as the mould base and standard parts. A
mould base is the assembly of a group of plates, pins, guide
bushes, etc. Besides shaping the product, a mould has to fulfil
a number of functions such as clamping the mould, leading
and aligning the mould halves, cooling, ejecting the product,
etc. Most moulds have to incorporate the same functionality,
which results in a similarity of the structural build-up. Some
form of standardisation in mould construction has been adopted.
A mould base is the result of this standardisation.

According to the feature-based and object-oriented assembly
representation, the feature-based solid models for component
parts of the mould base are first constructed; next, the assembly
objects are defined by establishing relationships between
components and encapsulating some functions in the component
parts; then, using these assembly objects, a hierarchical subas-
sembly object – a mould base – can be formed. This mould
base object can be instantiated by a group of data from the
catalogue database. Figure 4 shows the instantiation of the
mould base object to generate the specified mould base. This
specified mould base instance can be added automatically to
the mould assembly. The structural relations between the mould
base subassembly and top assembly can be expressed by Eqs.
(8) and (9), whereM p and M r are the unit matrices.

5.2 Automatic Addition of Standard Parts

A standard part is an assembly object. It can be defined
according to Eq. (1) in Section 3.1. In the database, the spatial
constraints are specified bymate, planeFalign and axisFalign,
but unlike the mould base, the position and orientation matrices
of a standard part are left unknown. During instantiation,
the software then automatically infers the explicit structural
relationships by using the simplified symbolic geometric
approach described in Section 4.

5.3 Pocketing for Assembly Objects

One of the important issues for automatic assembly design is
the automation of the pocketing process. Pocketing is an

Fig. 4. Instantiation of mould base.

operation that makes an empty space in corresponding compo-
nents to accommodate the inserted components. When an ejec-
tor is added to the assembly, an empty space is required on
the EA plate to accommodate the ejector, as shown in Fig. 5.

Since an object-oriented representation is adopted, each
assembly object can be represented by two solids, the real
object and the virtual object. The virtual object is modelled
according to the space that a real object will occupy. Whenever
an assembly object is added to an assembly, its virtual object
is also added to the assembly. The operation function
pocketFplate() in M of O will subtract the virtual object from
the corresponding components (see Eq. (1) and Table 1).
Moreover, because there are associativities between the virtual
object and real object, the pockets on the corresponding compo-
nents will change with the modification of the real object.

Fig. 5. Pocketing of assembled objects.



746 X. G. Ye et al.

This automatic pocketing function further demonstrates the
advantage of an object-oriented representation.

6. System Implementation

Based on the Unigraphics system [13], the proposed feature-
based and object-oriented assembly scheme and automation of
assembly modelling have been implemented in the IMOLD
system [14] developed at the National University of Singapore.
The Unigraphics system provides a user-friendly application
programming interface (API). Through this interface, the users
can call Unigraphics internal functions such as adding parts to
an assembly, modifying parameters, etc. Although Unigraphics
provides functions for mating conditions, the proposed approach
is still needed to infer the component configuration, because
it is necessary to calculate the degrees of freedom, and check
the validity of mating conditions before the component can be
added to the assembly. The proposed synthesised constraints
are compatible with Unigraphics constraints.

Figure 6 shows an injection moulded product, and the
designed injection mould assembly for this product is shown
in Fig. 7(a). The corresponding parent–child relationships for
fix-half subassembly are shown in Fig. 7(b). This assembly is
designed by the IMOLD system. Each plate of the mould base
is automatically positioned in the assembly. The standard parts
such as the locating ring and ejector are added to the assembly
automatically, and the pockets for these standard parts are also
created automatically.

7. Conclusion

The proposed feature-based and object-oriented hierarchical
representation for injection mould assembly not only extends
the feature paradigm to the assembly design, but also encapsu-
lates operational functions and geometric constraints, such as
the degree of freedom, mating conditions, insertion and orien-
tation limits, etc. Because of the extension of the feature
paradigm to assembly design, the modifications, such as dimen-

Fig. 6.An injection moulded product.

Fig. 7. The mould assembly for the product in Fig. 6.

sional changes of the assembled component can be made even
after the completion of the assembly process. The encapsulation
of assembly objects has the following two advantages: first,
because the mating conditions are encapsulated in the assembly
objects, automatic assembly design is easy to implement; sec-
ondly, the encapsulated operational functions in the object
assembly automate the routine processes of assembly design,
such as pocketing and interference check. The proposed simpli-
fied action analysis can substantially reduce the programming
effort needed for automatic checking for component inter-
ference within a mould assembly.

Acknowledgement

The authors would like to thank the National University of
Singapore and National Science and Technology Board of
Singapore for supporting the IMOLD [14] research project.

References

1. K. H. Shin and K. Lee, “Design of side cores of injection moulds
from automatic detection of interference faces”, Journal of Design
and Manufacturing, 3(3), pp. 225–236, December 1993.

2. Y. F. Zhang, K. S. Lee, Y. Wang, J. Y. H. Fuh and A. Y. C.
Nee, “Automatic slider core creation for designing slider/lifter of
injection moulds”, CIRP International Conference and Exhibition
on Design and Production of Dies and Moulds, pp. 33–38, Turkey,
19–21 June 1997.



Automated Assembly Modelling 747

3. E. C. Libardi, J. R. Dixon and M. K. Simmon, “Computer
environments for design of mechanical assemblies: A research
review”, Engineering with Computers, 3(3), pp. 121–136, 1988.

4. K. Lee and D. C. Gossard, “A hierarchical data structure for
representing assemblies”, Computer-Aided Design, 17(1), pp. 15–
19, January 1985.

5. K. Lee and D. Gossard, “Inference of position of components in
an assembly”, Computer-Aided Design, 17(1), pp. 20–24, Janu-
ary 1985.

6. A. P. Ambler and R. J. Popplestone, “Inferring the positions of
bodies from specified spatial relationships”, Artificial Intelligence,
6, pp. 157–174, 1975.

7. G. Kramer, Solving Geometric Constraint Systems: A Case Study
in Kinematics, MIT Press, Cambridge, MA, 1992.

8. J. J. Shah and M. T. Rogers, “Assembly modelling as an extension
of feature-based design”, Research in Engineering Design,

5(3&4), pp. 218–237, 1993.
9. J. P. Kruth, R. Willems and D. Lecluse, “A design support system

using high level mould objects”, CIRP International Conference
and Exhibition on Design and Production of Dies and Moulds,
pp. 39–44, Turkey, 19–21 June, 1997.

10. J. J. Shah, “Assessment of feature technology”, Computer-Aided
Design, 23(5), pp. 331–343, June 1991.

11. S. R. Gorti, A. Gupta, G. J. Kim, R. D. Sriram and A. Wong, “An
objection-oriented representation for product and design process”,
Computer-Aided Design, 30(7), pp. 489–501, June 1998.

12. J. Rumbaugh, M. Blaha, W. Premerlani, et al. Object-Oriented
Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

13. Unigraphics Essentials User Manual, Unigraphics Solution Co.,
Maryland Heights, MO, 1997.

14. IMOLD homepage http:://www.eng.nus.edu.sg/imold, Manusoft
Plastic Pte Ltd. Singapore.


