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One of the advantages of microcellular conventional injection molding over conventional injection molding is that the shrinkage of the part can be
reduced. This project investigated the effect of the process parameters on the shrinkage of the textile roller by conventional/microcellular injection-
molding process. Polybutyleneterephthalate (PBT) materials with 30 wt.% glass and Wollastonite fiber were used. The results showed that the
shrinkage by microcellular injection molding is less than that of conventional injection molding. Glass fiber filled PBT has more shrinkage than
Wollastonite fiber filled PBT due to the non-uniform cell size of the glass fiber filled PBT.
© 2008 Published by Elsevier Ltd.
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EC1. Introduction

The microcellular process was first introduced by N. P. Suh
[1,2] as a batch process in 1980. In this process, a polymer sample
is housed in a high pressure chamber. An inert gas like CO2 or N2

is introduced into the chamber, diffusing into the polymer until
saturation. Then, the pressure is rapidly reduced while the poly-
mer temperature is simultaneously increased, producing a thermo-
dynamic instability that lowers the gas solubility and creates cell
growth. The disadvantage of the batch process is that a long
period of time is required for the polymer to become saturated
with the gas, due to low diffusion rates at room temperature. To
avoid this problem, microcellular extrusion was developed. It
reduces the time necessary for the gas to saturate the polymer by
introducing the inert gas into the barrel while the polymer is still
molten. The diffusion rate is high because the temperature in the
barrel is high. Unfortunately, as parts become more complex,
microcellular extrusion cannot be used to produce them.

In response, microcellular injection molding was developed
[3] and commercialized by Trexel Co. Ltd. as the Mucell@

process. The key insight of this process is the application of a
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supercritical fluid. The supercritical fluid is injected during the
injection stage cycle, creating millions of micron-sized voids in
otherwise solid thermoplastic polymer parts.

Several studies have investigated the shrinkage andwarpage of
injection molded parts. Bushko et al. [4,5] studied the effect of
processing conditions on shrinkage, warpage, and residual
stresses of a thermal viscoelastic melt. Their results showed that
a higher packing pressure resulted in less shrinkage. Liao et al. [6]
investigated optimal process conditions for shrinkage and war-
page in thin-wall parts. They showed that the optimal process
conditions differ for shrinkage and warpage in injected thin-wall
cellular-phone covers. Recently, Kramschuster et al. [7] studied
the shrinkage and warpage behavior of a grocery box in micro-
cellular and conventional injection molding. They showed that
the SCF level and injection speed are the most important factors
affecting the shrinkage and warpage of microcellular injection
molded parts. In the author's last paper [8], we have showed that
the shrinkage rate of microcellular injection molding is less than
that of convention injection molding.

The textile roller (Fig. 1) in the textile machines is a worn part
which should be replaced after a certain time. The material of the
roller is PBT. PBT has good dimensional stability, mechanical
strength, stiffness, and fire retardant characteristics. To improve
the mechanical strength, most of the plastics are filled with glass
fiber. In this study, both glass and Wollastonite fiber filled PBT
by conventional/microcellular injection-molding process , Int Commun Heat
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Fig. 1. Simplified diagram of textile roller.

Fig. 2. Points 1, 3, 5, 7, 9 and 11 are the gate positions. The rim thickness is
measured at red area according to the 12 points direction from center. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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which can improve thermal and dimensional stability at elevated
temperatures [9].
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6In this study, we have investigated the effects of process
6parameters on the variation of the rim thickness (Fig. 2) by
6conventional and microcellular injection molding. The specifica-
6tion of the rim thickness is ±0.02 mm. If the rim thickness
7tolerance is out of specification, there is a running noise from the
7roller, and the textile roller should be replaced after a certain time.

72. Experimental work

72.1. Material

7The materials used were 30 wt.% glass fiber filled PBT and 30 wt.%
7Wollastonite fiber filled PBT. The PBT material, Shinte D202G30, was supplied
7by Shinkong Synthetic Fibers Co. The material was dried at 120 °C for 3 h
7before injection molding. The PVT diagram [10] is shown in Fig. 3.

72.2. Part geometry and mold design

7A three-plate-mold with 4 cavities of a textile roller was used in this study.
8Each cavity has six gates around the thin section of the roller (Fig. 4). Points 1, 3,
85, 7, 9 and 11 are the gate positions (Fig. 2). There is a weld-line in between 1
8and 3 and so on. The rim thickness of the textile roller is 6.4 mm in the cavity.

82.3. Injection-molding machine

8The injection-molding machine used was the Arburg 420C Allrounder 1000-
8350, equipped with Mucell capability. Nitrogen is used as the gas source. In this
8study, the process parameters; melt temperature, injection speed, shot size, melt
8plastification pressure (MPP), SCF level, and mold temperature; were varied to
8determine the effects on the rim thickness of the textile roller. The details of the
8process parameters are shown in Table 1.
9Experiments were carried out by changing one factor at a time and keeping the
9others constant. The rim thickness was measured by micrometer, and the mic-
9rostructure of the foamed part was examined by scanning electron microscope
9(SEM).

92.4. Microscopy

9A SEM was used to observe the morphology of the cell structure in the
9textile roller. The cell structure in the SEM image was taken on a JEOL
iber filled PBT material [10].

by conventional/microcellular injection-molding process , Int Commun Heat
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Fig. 4. The configuration of sprue, runner and gate.
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Fig. 5. Short shot of the four cavities.
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JSM6360. Specimens were cut into smaller pieces and gold was sputtered onto
the surface. They were then inspected using the SEM.

3. Results and discussions

Although there are 4 cavities in onemold, only one cavity (#1 in Fig. 5)
was taken for the measurement in order to get consistent data. The rim
thicknesswas the average of the five samples. The experiment was carried
out by short shot first and showed that the runner system has unbalanced
melt flow problem (Fig. 5) [11]. Someportions are filledwhereas some are
only partially filled. To improve this problem, a modified mold design is
needed which will be mentioned later. The injection-molding process was
done by the conventional method first, and then the microcellular process
was introduced as the foaming molding method.

3.1. The effect of process conditions on rim thickness of the textile
roller of PBT with glass fiber by conventional injection molding

According to the sprue runner system of themold (Fig. 4). The gates 3
and 5(Fig. 2) are far from the runner as compared to the other gates on the
up right cavity. So there is an unbalanced melt flow problem around this
area. Fig. 6 shows the rim thickness of the roller by conventionalmolding.
The maximum thickness is 6.075 mm on gate 11. The thickness variation
is more than 0.10 mm, and points 4 and 5 have the least thickness.

3.2. The effect of process conditions on rim thickness of the textile
roller of PBT with glass fiber by microcellular injection molding

It needs certain time to make the microcellular injection molding
stable when the supercritical fluid is introduced into the barrel. Parts are
sampled after half an hour of operation to make sure the cell is uniform.
Fig. 7 shows the rim thickness variation of the glass fiber filled PBT by
U 154
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Table 1
Process parameters for microcellular injection-molding process of the textile
roller

1 2 3

Melt temp. (°C) 255 265 275
Injection speed (cm3/s) 130 140 150
Shot size (cm3) 39 41 43
MPP (bar) 130 140 150
SCF level (%) 0.18 0.28 0.38
Mold temp. (°C) 40 50 60
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Omicrocellular injection molding. The thickness variation is around
0.04 mm, which is on the margin of the specification, and the thinnest
occurs at point 5. The thickness trend is similar to that of solid molding,
but the thickness variation is smaller for microcellular molding. How-
ever the maximum thickness occurs at point 12 (weld-line position) and
the value is 6.27 mm. This is larger than that by conventional injection
molding and it is caused by the expansion of the cell whereas it is
compression on conventional injection molding. So the shrinkage rate
for microcellular injection molding is less than that of conventional
injection molding.

3.3. The effect of process conditions on rim thickness of the textile
roller of PBT with mineral fiber by microcellular injection molding

Figs. 8–13 show the rim thickness variation of Wollastonite filled
PBT by microcellular molding. From the curves observed, the thickness
variation of Wollastonite filled PBT is smaller than that of glass fiber
filled PBT, and the curves of the Wollastonite filled PBT are smoother
than those of glass fiber filled PBT. For the process conditions used, only
the MPP has the trend whereas the MPP is increased, the rim thickness
variation is decreased. MPP is the driving force to make cells smaller.

Figs. 14 and 15 show the microstructure of the cell near the gate of
glass fiber and Wollastonite fiber filled PBT. The cell structure of
Wollastonite fiber filled PBT is more uniform than that of glass fiber
filled PBT, and the cell size is around 10 μm.

The large rim thickness variation of glass fiber filled PBT may be
attributed to the non-uniform cell structure. For the shrinkage rate [12],
the average thickness of solid glass filled, foamed glass fiber filled, and
foamed Wollastonite filled PBT is 6.004, 6.243, and 6.256 mm
respectively. The thickness on the mold is 6.40 mm. In turn, the
shrinkage rate is 6%, 2.4%, and 2.2% for solid glass filled, foamed glass
fiber filled, and foamed Wollastonite filled PBT respectively.

The method to improve the rim thickness variation is changing the
runner design as shown in Fig. 16. By this design, the melt has more
balanced flow characteristics. Because the mold is too complex to
modify, computer simulation, Modex3D [10], is used to simulate the
flow characteristics of the old and modified design. Fig. 17 shows the
rim shrinkage of the original and modified designs. It shows that the
modified design has less shrinkage compared to the original design.
160

161

162
4. Conclusions

The effect of the process parameters on the rim thickness of
glass fiber and Wollastonite filled PBT by conventional and
by conventional/microcellular injection-molding process , Int Commun Heat
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Fig. 6. Rim thickness variation vs. injection speed for solid glass fiber filled PBT.

Fig. 7. Rim thickness variation vs. injection speed for foamed glass fiber filled PBT.
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microcellular injection-molding process has been conducted. It
has been found that:

(1) For the rim thickness, microcellular injection molding has
smaller thickness variation than conventional molding.

(2) The textile roller has more uniform thickness with
Wollastonite filled PBT than glass filled PBT.

(3) Parts have less shrinkage by microcellular injection
molding compared to that by conventional molding.
Please cite this article as: S. Hwang, et al., Shrinkage study of textile roller molded
Mass Transf (2008), doi:10.1016/j.icheatmasstransfer.2008.02.011
1(4) Wollastonite filled PBT has more uniform cell struc-
1ture but lower shrinkage rate than that of glass filled
1PBT.
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Fig. 8. Rim thickness variation vs. melt temperature for foamed Wollastonite fiber filled PBT.

Fig. 9. Rim thickness variation vs. injection speed for foamed Wollastonite fiber filled PBT.
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Fig. 10. Rim thickness variation vs. MPP for foamed Wollastonite fiber filled PBT.

Fig. 11. Rim thickness variation vs. SCF level for foamed Wollastonite fiber filled PBT.
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Fig. 12. Rim thickness variation vs. shot size for foamed Wollastonite fiber filled PBT.

Fig. 13. Rim thickness variation vs. mold temperature for foamed Wollastonite fiber filled PBT.
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Fig. 15. The cell structure of the Wollastonite fiber filled PBT near the gate.

Fig. 14. The cell structure of the glass fiber filled PBT near the gate.

Fig. 16. More balanced design of the runner system.
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Fig. 17. Comparison of shrinkage at rim of the original and modified designs.
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